rollout_plot_callback = None
verbose = int(self.get_model_params().get("verbose", 0))
- if self.plot_new_best:
- rollout_plot_callback = RolloutPlotCallback(verbose=verbose)
-
if self.max_no_improvement_evals:
no_improvement_callback = StopTrainingOnNoModelImprovement(
max_no_improvement_evals=self.max_no_improvement_evals,
if self.activate_tensorboard:
info_callback = InfoMetricsCallback(actions=Actions, verbose=verbose)
callbacks.append(info_callback)
+ if self.plot_new_best:
+ rollout_plot_callback = RolloutPlotCallback(verbose=verbose)
if self.rl_config.get("progress_bar", False):
self.progressbar_callback = ProgressBarCallback()
)
callbacks.append(self.eval_callback)
else:
+ trial_data_path = f"{data_path}/trial_{trial.number}"
self.optuna_callback = MaskableTrialEvalCallback(
self.eval_env,
trial,
eval_freq=eval_freq,
deterministic=True,
render=False,
- best_model_save_path=data_path,
+ best_model_save_path=trial_data_path,
use_masking=self.is_maskable,
verbose=verbose,
)
if self.activate_tensorboard:
tensorboard_log_path = Path(
- self.full_path / "tensorboard" / dk.pair.split("/")[0]
+ self.full_path
+ / "tensorboard"
+ / dk.pair.split("/")[0]
+ / "hyperopt"
+ / f"trial_{trial.number}"
)
else:
tensorboard_log_path = None