--- /dev/null
+#!/usr/bin/env python3
+
+# -*- coding: utf-8 -*-
+from sklearn import neighbors
+from sklearn.datasets import load_iris
+irisData = load_iris()
+
+X = irisData.data
+Y = irisData.target
+
+colors = ["red", "green", "blue"]
+
+nb_voisins = 15
+clf = neighbors.KNeighborsClassifier(nb_voisins)
+clf.fit(X, Y)
+print("kNN prediction on [5.4, 3.2, 1.6, 0.4]:")
+print(clf.predict([[5.4, 3.2, 1.6, 0.4]]))
+print("kNN probability prediction on [5.4, 3.2, 1.6, 0.4]:")
+print(clf.predict_proba([[5.4, 3.2, 1.6, 0.4]]))
+print("kNN score on Iris data:")
+print(clf.score(X, Y))
+print("kNN prediction error(s) on Iris data:")
+Z = clf.predict(X)
+print(X[Z != Y])