\usepackage{fancyhdr}
\usepackage{tocbibind}
\usepackage{lmodern}
+\usepackage{enumitem}
%%%%%Marges & en-t\^etes
\begin{tabular}{c}
\hline
~ \\
- \LARGE\textbf {Programmation Séquentielle Quadratique ou PQS} \\
+ \LARGE\textbf {Programmation Quadratique Séquentielle ou PQS} \\
\LARGE\textbf {en} \\
\LARGE\textbf {Optimisation non linéraire sous contraintes} \\
~ \\
La problèmatique $ \mathcal{P} $ se définit par :
$$
\mathcal{P} \left \{
- \begin{array}{r}
+ \begin{array}{l}
\displaystyle\min_{x \in \mathbb{R}^n} J(x) \\
g(x) \leq 0 \\
h(x) = 0
On définit le Lagrangien associé à $ \mathcal{P} $ par :
$$ \begin{array}{r c l}
L : \mathbb{R}^n \times \mathbb{R}^q \times \mathbb{R}_+^p & \longrightarrow & \mathbb{R} \\
- (x,\lambda,\mu) & \longmapsto & L(x,\lambda,\mu) = J(x) + \sum\limits_{i=0}^{q} \lambda_i h_i(x) + \sum\limits_{j=0}^{p} \mu_j g_j(x) \\
+ (x,\lambda,\mu) & \longmapsto & L(x,\lambda,\mu) = J(x) + \sum\limits_{i=1}^{q} \lambda_i h_i(x) + \sum\limits_{j=1}^{p} \mu_j g_j(x) \\
& & L(x,\lambda,\mu) = J(x) + \langle \lambda,h(x) \rangle_{\mathbb{R}^q} + \langle \mu,g(x) \rangle_{\mathbb{R}^p}
\end{array} $$
où l’on note $ \lambda $ et $ \mu $ les vecteurs de coordonnées respectives $ (\lambda_1,\ldots,\lambda_q) $ et $ (\mu_1,\ldots,\mu_p) $.
Autrement dit, $ d_k $ est le point de minimum global de l’approximation de second ordre de
$ J $ au voisinage du point courant $ x_k $.
A condition que la matrice $ H[J](x_k) $ soit définie positive à chaque itération, la méthode
-de Newton est bien une méthode de descente à pas fixe égal à $ 1 $ . Les propriétés remarquables de cet algorithme sont :
+de Newton est bien une méthode de descente à pas fixe égal à $ 1 $.
+\newline
+Les propriétés remarquables de cet algorithme sont :
\begin{tabular}{|p{20em}|p{20em}|}
\hline
\item Comment déterminer une matrice $ H_k $ qui soit une “bonne” approximation de la hessienne à l’itération $ k $ sans utiliser les informations de second ordre et garantir que $ H_k^{-1} \nabla J(x_k) $ soit bien une direction de descente de $ J $ en $ x_k $, sachant que la direction de Newton, si elle existe, n’en est pas nécessairement une ?
\item Comment conserver les bonnes propriétés de l’algorithme de Newton ?
\end{itemize}
-Nous ne répondrons pas à ces questions qui sont hors du cadre de ce projet. Cette section permet de rendre compte de la filiation entre la méthode PQS et celle Newtonienne.
+Nous ne répondrons pas à ces questions qui sont hors du cadre de ce projet. Cette section permet d'introduire certains prérequis pour l'étude de la méthode PQS et de rendre compte de sa filiation.
\section{Méthode PQS (ou SQP)}
\subsection{Algorithmes newtoniens}
-Les algorithmes newtoniens sont basés sur la linéarisation d’équations caractérisant les solutions que l’on cherche, fournies par les conditions d’optimalité d’ordre $ 1 $. Ces algorithmes sont \textit{primaux-duaux} dans le sens où ils génèrent à la fois une suite primale $ (x_k )_{k \in \mathbb{N}} $ convergeant vers une solution $ \overline{x} $ du problème considéré, et une suite géométrique duale $ (\lambda^k)_{k \in \mathbb{N}} $ de multiplicateurs convergeant vers un multiplicateur optimal $ \overline{\lambda} $ associé à $ \overline{x} $.
+Les algorithmes newtoniens sont basés sur la linéarisation d’équations caractérisant les solutions que l’on cherche, fournies par les conditions d’optimalité d’ordre $ 1 $. Ces algorithmes sont \textit{primaux-duaux} dans le sens où ils génèrent à la fois une suite primale $ (x_k )_{k \in \mathbb{N}} $ convergeant vers une solution $ \overline{x} $ du problème considéré, et une suite duale $ (\lambda_k)_{k \in \mathbb{N}} $ de multiplicateurs convergeant vers un multiplicateur optimal $ \overline{\lambda} $ associé à $ \overline{x} $.
\subsection{Algorithme PQS}
Considérons un problème d’optimisation différentiable $ \mathcal{P} $ avec contraintes d’égalité :
$$
\mathcal{P} \left \{
- \begin{array}{r}
+ \begin{array}{l}
\displaystyle\min_{x \in \mathbb{R}^n} J(x) \\
h(x) = 0
\end{array}
où $ J: \mathbb{R}^n \longrightarrow \mathbb{R} $ et $h: \mathbb{R}^n \longrightarrow \mathbb{R}^q$ sont supposées au moins différentiables.
\newline
Les conditions d’optimalité de Lagrange (ou \textit{KKT}) s’écrivent :
-$$ \nabla L(x,\lambda) = 0 \iff \nabla J(x) + \sum\limits_{i=0}^{q} \lambda_i \nabla h_i(x) = 0 $$
+$$ \nabla J(x) + \sum\limits_{i=1}^{q} \lambda_i \nabla h_i(x) = 0 \iff \nabla L(x,\lambda) = 0 $$
donc $ \mathcal{P} $ devient :
$$ \begin{pmatrix}
- \nabla J(x) + \sum\limits_{i=0}^{q} \lambda_i \nabla h_i(x) \\
+ \nabla J(x) + \sum\limits_{i=1}^{q} \lambda_i \nabla h_i(x) \\
h(x)
\end {pmatrix} = 0 $$
Pour résoudre ce système d’équations, utilisons la méthode de Newton dont une itération s’écrit ici :
+$$ H[L](x_k,\lambda_k)\begin{pmatrix}
+ x_{k+1} - x_k \\
+ \lambda_{k+1} - \lambda_k
+ \end{pmatrix} = -\nabla L(x_k,\lambda_k) $$
+soit :
+$$ \begin{pmatrix}
+ H_x[L](x_k,\lambda_k) & D_h(x_k)^\top \\
+ D_h(x_k) & 0
+ \end{pmatrix} \begin{pmatrix}
+ x_{k+1} - x_k \\
+ \lambda_{k+1} - \lambda_k
+ \end{pmatrix} = -\begin{pmatrix}
+ \nabla_x L(x_k,\lambda_k) \\
+ h(x_k)
+ \end{pmatrix} $$
+où $ D_h(x) $ désigne la matrice jacobienne de l’application $ h : \mathbb{R}^n \longrightarrow \mathbb{R}^q $ définie par :
+$$ D_h(x)^\top = [\nabla h_1(x)\ldots\nabla h_q(x)] $$
+Posons : $ H_k = H_x[L](x_k,\lambda_k), \ d = x_{k+1} - x_k $ et $ \mu = \lambda_{k+1} $. L'itération s'écrit donc :
+$$ \begin{pmatrix}
+ H_k & D_h(x_k)^\top \\
+ D_h(x_k) & 0
+ \end{pmatrix} \begin{pmatrix}
+ d \\
+ \mu - \lambda_k
+ \end{pmatrix} = -\begin{pmatrix}
+ \nabla_x L(x_k,\lambda_k) \\
+ h(x_k)
+ \end{pmatrix} $$
+et est bien définie à condition que la matrice $ H_x[L](x_k,\lambda_k) $ soit inversible. Ce sera le cas si :
+\begin{enumerate}[label=(\roman*)]
+ \item Les colonnes $ \nabla h_1(x_k),\ldots,\nabla h_q(x_k) $ de $ D_h(x_k)^\top $ sont linéairement indépendants : c’est l’hypothèse de qualification des contraintes.
+ \item Quel que soit $ d \neq 0 $ tel que $ D_h(x_k)d = 0, \ d^\top H_k d > 0 $ : c’est la condition suffisante d’optimalité du second ordre dans le cas de contraintes d’égalité.
+\end{enumerate}
+Revenons à l’itération. Elle s’écrit encore :
+$$
+ \left \{
+ \begin{array}{r c l}
+ H_kd + \sum\limits_{i=1}^q(\mu_i - \lambda_{k_i})\nabla h_i(x_k) & = & -\nabla_x L(x_k,\lambda_k) \\
+ \nabla h_i(x_k)^\top d + h_i(x_k) & = & 0, \ \forall i \in \{1,\ldots,q\}
+ \end{array}
+ \right .
+$$
+Or $ \nabla_x L(x_k,\lambda_k) = \nabla J(x_k) + \sum\limits_{i=1}^{q} \lambda_{k_i} \nabla h_i(x_k) $, d'où :
+$$
+ \left \{
+ \begin{array}{r c l}
+ H_kd + \sum\limits_{i=1}^q\mu_i\nabla h_i(x_k) & = & -\nabla J(x_k) \\
+ \nabla h_i(x_k)^\top d + h_i(x_k) & = & 0, \ \forall i \in \{1,\ldots,q\}
+ \end{array}
+ \right .
+$$
+On reconnait dans le système ci-dessus les conditions d’optimalité de Lagrange du
+problème quadratique suivant :
+$$
+ \mathcal{PQ}_k \left \{
+ \begin{array}{l}
+ \displaystyle\min_{d \in \mathbb{R}^n} \nabla J(x_k)^\top d + \frac{1}{2}d^\top H_k d \\
+ h_i(x_k) + \nabla h_i(x_k)^\top d = 0, \ \forall i \in \{1,\ldots,q\}
+ \end{array}
+ \right .
+$$
+Le problème $ \mathcal{PQ}_k $ peut être vu comme la minimisation d’une approximation quadratique du Lagrangien de $ \mathcal{P} $ avec une approximation linéaire des contraintes.
+\newline
+Comme son nom l’indique, la méthode PQS consiste à remplacer le problème initial par une suite de problèmes quadratiques sous contraintes linéaires plus faciles à résoudre. L’algorithme est le suivant :
+
+\subsubsection{Contraintes d’inégalité}
\bibliographystyle{plain}
\bibliography{stdlib_sbphilo}