def min_max_pred(
pred_df: pd.DataFrame, fit_live_predictions_candles: int, label_period_candles: int
):
+ local_pred_df = pd.DataFrame()
+ for label in pred_df:
+ if pred_df[label].dtype == object:
+ continue
+ local_pred_df[label] = pred_df[label]
beta = 10.0
- min_pred = pred_df.tail(label_period_candles).apply(
+ min_pred = local_pred_df.tail(label_period_candles).apply(
lambda col: smooth_min(col, beta=beta)
)
- max_pred = pred_df.tail(label_period_candles).apply(
+ max_pred = local_pred_df.tail(label_period_candles).apply(
lambda col: smooth_max(col, beta=beta)
)
def __min_max_pred(
pred_df: pd.DataFrame, fit_live_predictions_candles: int, label_period_candles: int
):
- pred_df_sorted = (
- pred_df.select_dtypes(exclude=["object"])
- .copy()
- .apply(lambda col: col.sort_values(ascending=False, ignore_index=True))
+ pred_df_sorted = pd.DataFrame()
+ for label in pred_df:
+ if pred_df[label].dtype == object:
+ continue
+ pred_df_sorted[label] = pred_df[label]
+ pred_df_sorted = pred_df_sorted.apply(
+ lambda col: col.sort_values(ascending=False, ignore_index=True)
)
frequency = fit_live_predictions_candles / label_period_candles
def min_max_pred(
pred_df: pd.DataFrame, fit_live_predictions_candles: int, label_period_candles: int
):
+ local_pred_df = pd.DataFrame()
+ for label in pred_df:
+ if pred_df[label].dtype == object:
+ continue
+ local_pred_df[label] = pred_df[label]
beta = 10.0
- min_pred = pred_df.tail(label_period_candles).apply(
+ min_pred = local_pred_df.tail(label_period_candles).apply(
lambda col: smooth_min(col, beta=beta)
)
- max_pred = pred_df.tail(label_period_candles).apply(
+ max_pred = local_pred_df.tail(label_period_candles).apply(
lambda col: smooth_max(col, beta=beta)
)
def __min_max_pred(
pred_df: pd.DataFrame, fit_live_predictions_candles: int, label_period_candles: int
):
- pred_df_sorted = (
- pred_df.select_dtypes(exclude=["object"])
- .copy()
- .apply(lambda col: col.sort_values(ascending=False, ignore_index=True))
+ pred_df_sorted = pd.DataFrame()
+ for label in pred_df:
+ if pred_df[label].dtype == object:
+ continue
+ pred_df_sorted[label] = pred_df[label]
+ pred_df_sorted = pred_df_sorted.apply(
+ lambda col: col.sort_values(ascending=False, ignore_index=True)
)
frequency = fit_live_predictions_candles / label_period_candles