label_period_candles: int,
) -> tuple[float, float]:
label_period_cycles = fit_live_predictions_candles / label_period_candles
- thresholds_candles = int(
- self.freqai_info.get(
- "prediction_thresholds_candles",
- max(2, int(label_period_cycles)) * label_period_candles,
- )
- )
+ thresholds_candles = max(2, int(label_period_cycles)) * label_period_candles
+
pred_extrema = pred_df.get(EXTREMA_COLUMN).iloc[-thresholds_candles:].copy()
thresholds_smoothing = str(
self.freqai_info.get("prediction_thresholds_smoothing", "mean")
max_label_period_candles,
step=candles_step,
)
- label_natr_ratio = trial.suggest_float("label_natr_ratio", 8.5, 15.5, step=0.05)
+ label_natr_ratio = trial.suggest_float("label_natr_ratio", 8.5, 14.5, step=0.05)
label_period_cycles = fit_live_predictions_candles / label_period_candles
df = df.iloc[-(max(2, int(label_period_cycles)) * label_period_candles) :]
side: str,
order: Literal["entry", "exit"],
rate: float,
- min_natr_ratio_percent: float = 0.0095,
- max_natr_ratio_percent: float = 0.095,
+ min_natr_ratio_percent: float = 0.009,
+ max_natr_ratio_percent: float = 0.09,
lookback_period: int = 1,
decay_ratio: float = 0.5,
) -> bool: