# Ensure that the sampled parameters take precedence
params = deepmerge(self.get_model_params(), params)
+ params["seed"] = params.get("seed", 42) + trial.number
logger.info("Trial %s params: %s", trial.number, params)
eval_weights=[test_weights],
model_training_parameters=model_training_parameters,
callbacks=get_optuna_callbacks(trial, regressor),
+ trial=trial,
)
y_pred = model.predict(X_test)
eval_weights=[test_weights],
model_training_parameters=model_training_parameters,
callbacks=get_optuna_callbacks(trial, regressor),
+ trial=trial,
)
y_pred = model.predict(X_test)
model_training_parameters: dict[str, Any],
init_model: Any = None,
callbacks: Optional[list[Callable]] = None,
+ trial: Optional[optuna.trial.Trial] = None,
) -> Any:
if regressor == "xgboost":
from xgboost import XGBRegressor
if model_training_parameters.get("random_state") is None:
model_training_parameters["random_state"] = 1
+ if trial is not None:
+ model_training_parameters["random_state"] = (
+ model_training_parameters["random_state"] + trial.number
+ )
+
model = XGBRegressor(
objective="reg:squarederror",
eval_metric="rmse",
if model_training_parameters.get("seed") is None:
model_training_parameters["seed"] = 1
+ if trial is not None:
+ model_training_parameters["seed"] = (
+ model_training_parameters["seed"] + trial.number
+ )
+
model = LGBMRegressor(objective="regression", **model_training_parameters)
model.fit(
X=X,