INTERFACE_VERSION = 3
def version(self) -> str:
- return "3.2.3"
+ return "3.2.4"
timeframe = "5m"
"label_period_candles"
].iloc[-1]
- label_window = self.get_label_period_candles(pair) * 2
+ labeling_window = self.get_label_period_candles(pair) * 2
- dataframe["natr_ratio_labeling_window"] = pta.natr(
- dataframe["high"],
- dataframe["low"],
- dataframe["close"],
- length=label_window,
- scalar=1,
- mamode="ema",
+ dataframe["natr_labeling_window"] = ta.NATR(
+ dataframe, timeperiod=labeling_window
)
dataframe["minima_threshold"] = dataframe[MINIMA_THRESHOLD_COLUMN]
if entry_candle is None:
return None
entry_candle = entry_candle.squeeze()
- return entry_candle["natr_ratio_labeling_window"]
+ return entry_candle["natr_labeling_window"]
def get_trade_duration_candles(self, df: DataFrame, trade: Trade) -> int | None:
"""
trade_duration_candles = self.get_trade_duration_candles(df, trade)
if QuickAdapterV3.is_trade_duration_valid(trade_duration_candles) is False:
return None
- current_natr = df["natr_ratio_labeling_window"].iloc[-1]
+ current_natr = df["natr_labeling_window"].iloc[-1]
if isna(current_natr):
return None
return (
entry_natr = self.get_trade_entry_natr(df, trade)
if isna(entry_natr):
return None
- current_natr = df["natr_ratio_labeling_window"].iloc[-1]
+ current_natr = df["natr_labeling_window"].iloc[-1]
if isna(current_natr):
return None
return (
return False
last_candle = df.iloc[-1].squeeze()
entry_price_fluctuation_threshold = (
- last_candle["natr_ratio_labeling_window"] * self.entry_natr_ratio
+ last_candle["natr_labeling_window"] * self.entry_natr_ratio
)
if (
side == "long"