try:
delete_study(study_name=study_name, storage=storage)
except Exception as e:
- logger.warning("Hyperopt [%s]: failed to delete study: %r", study_name, e)
+ logger.warning(
+ "Hyperopt [%s]: failed to delete study: %r",
+ study_name,
+ e,
+ exc_info=True,
+ )
@staticmethod
def _sanitize_pair(pair: str) -> str:
pair,
counters_path,
e,
+ exc_info=True,
)
return {}
pair,
counters_path,
e,
+ exc_info=True,
)
def _increment_optuna_retrain_counter(self, pair: str) -> int:
callbacks = self.get_callbacks(eval_env, eval_freq, str(dk.data_path), trial)
try:
model.learn(total_timesteps=total_timesteps, callback=callbacks)
- except AssertionError:
+ except AssertionError as e:
logger.warning(
- "Hyperopt [%s]: trial #%d encountered NaN (AssertionError)",
+ "Hyperopt [%s]: trial #%d encountered NaN (AssertionError): %r",
study_name,
trial.number,
+ e,
+ exc_info=True,
)
nan_encountered = True
except ValueError as e:
study_name,
trial.number,
e,
+ exc_info=True,
)
nan_encountered = True
else:
study_name,
trial.number,
e,
+ exc_info=True,
)
nan_encountered = True
except RuntimeError as e:
study_name,
trial.number,
e,
+ exc_info=True,
)
nan_encountered = True
else:
e,
ReforceXY._EXIT_ATTENUATION_MODES[2], # "linear"
effective_dr,
+ exc_info=True,
)
time_attenuation_coefficient = _linear(
effective_dr, model_reward_parameters
self.logger.record(key, value, exclude=exclude)
except Exception as e:
logger.warning(
- "Tensorboard [global]: logger.record failed at %r: %r", key, e
+ "Tensorboard [global]: logger.record failed at %r: %r",
+ key,
+ e,
+ exc_info=True,
)
if exclude is None:
exclude = ("tensorboard",)
self.eval_idx,
self.num_timesteps,
e,
+ exc_info=True,
)
self.is_pruned = True
return False
self.eval_idx,
self.num_timesteps,
e,
+ exc_info=True,
)
self.is_pruned = True
return False
self.eval_idx,
self.num_timesteps,
e,
+ exc_info=True,
)
best_mean_reward = np.nan
self.eval_idx,
self.num_timesteps,
e,
+ exc_info=True,
)
self.is_pruned = True
return False