tensorboard_throttle,
)
self.rl_config["tensorboard_throttle"] = 1
- if self.continual_learning and self.frame_stacking:
+ if self.continual_learning and bool(self.frame_stacking):
logger.warning(
"User tried to use continual_learning with frame_stacking=%s. "
"Deactivating continual_learning",
)
n = int(np_dataframe.shape[0])
window_length = int(self.CONV_WIDTH)
+ frame_stacking = self.frame_stacking
+ frame_stacking_activated = bool(frame_stacking) and frame_stacking > 1
+ inference_masking = self.action_masking and self.inference_masking
add_state_info = self.rl_config.get("add_state_info", False)
def _update_virtual_position(action: int, position: Positions) -> Positions:
np_observation = np.concatenate([np_observation, state_block], axis=1)
fb: List[NDArray[np.float32]] = frame_buffer
- frame_stacking = self.frame_stacking
- if frame_stacking and frame_stacking > 1:
+ if frame_stacking_activated:
fb.append(np_observation)
if len(fb) > frame_stacking:
del fb[0 : len(fb) - frame_stacking]
1, np_observation.shape[0], np_observation.shape[1]
)
- if self.action_masking and self.inference_masking:
+ if inference_masking:
action_masks_param["action_masks"] = ReforceXY.get_action_masks(
self.can_short, virtual_position
)
else:
eval_env = DummyVecEnv(eval_fns)
- if self.frame_stacking:
+ if bool(self.frame_stacking):
train_env = VecFrameStack(train_env, n_stack=self.frame_stacking)
eval_env = VecFrameStack(eval_env, n_stack=self.frame_stacking)