] = self.__optuna_period_params[dk.pair].get("label_period_candles")
model = LGBMRegressor(
- objective="regression", metric="rmse", **model_training_parameters
+ objective="regression", **model_training_parameters
)
eval_set, eval_weights = self.eval_set_and_weights(X_test, y_test, test_weights)
# Fit the model
model = LGBMRegressor(
- objective="regression", metric="rmse", **model_training_parameters
+ objective="regression", **model_training_parameters
)
model.fit(
X=X,
# Fit the model
model = LGBMRegressor(
- objective="regression", metric="rmse", **model_training_parameters
+ objective="regression", **model_training_parameters
)
model.fit(
X=X,
def feature_engineering_expand_all(self, dataframe, period, **kwargs):
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
+ dataframe["%-aroonosc-period"] = ta.AROONOSC(dataframe, timeperiod=period)
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
dataframe["%-adx-period"] = ta.ADX(dataframe, window=period)
dataframe["%-cci-period"] = ta.CCI(dataframe, timeperiod=period)
dataframe["%-tcp-period"] = top_percent_change(dataframe, period=period)
dataframe["%-cti-period"] = pta.cti(dataframe["close"], length=period)
dataframe["%-chop-period"] = qtpylib.chopiness(dataframe, period)
- dataframe["%-linear-period"] = ta.LINEARREG_ANGLE(
+ dataframe["%-linearreg-angle-period"] = ta.LINEARREG_ANGLE(
dataframe["close"], timeperiod=period
)
dataframe["%-atr-period"] = ta.ATR(dataframe, timeperiod=period)
- dataframe["%-atr-periodp"] = ta.NATR(dataframe, timeperiod=period)
+ dataframe["%-natr-period"] = ta.NATR(dataframe, timeperiod=period)
return dataframe
def feature_engineering_expand_basic(self, dataframe, **kwargs):
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-raw_volume"] = dataframe["volume"]
dataframe["%-obv"] = ta.OBV(dataframe)
- # Added
- # dataframe["%-ewo"] = EWO(dataframe=dataframe, mode="zlewma", normalize=True)
+ dataframe["%-ewo"] = EWO(dataframe=dataframe, mode="zlewma", normalize=True)
psar = ta.SAR(
dataframe["high"], dataframe["low"], acceleration=0.02, maximum=0.2
)
dataframe["%-vwap_width"] = (
(dataframe["vwap_upperband"] - dataframe["vwap_lowerband"])
/ dataframe["vwap_middleband"]
- ) * 100
+ )
dataframe["%-dist_to_vwap_upperband"] = get_distance(
dataframe["close"], dataframe["vwap_upperband"]
)