\begin{tabular}{c}
\hline
- ~ \\
- \LARGE\textbf {Programmation Séquentielle Quadratique ou PQS} \\
- \LARGE\textbf {en} \\
- \LARGE\textbf {Optimisation non linéraire sous contraintes} \\
- ~ \\
+ ~ \\
+ \LARGE\textbf {Programmation Séquentielle Quadratique ou PQS} \\
+ \LARGE\textbf {en} \\
+ \LARGE\textbf {Optimisation non linéraire sous contraintes} \\
+ ~ \\
\hline
\end{tabular}
Définissons quelques notions supplémentaires de base nécessaires à la suite :
\begin{Def}
-Soient $ \mathbb{R}^n $ un espace topologique, $ A \subset \mathbb{R}^n $ et $ x^\ast \in \mathbb{R}^n $.
-\newline
-On dit que $ x^\ast $ est \textbf{intérieur} à $ A $ si $ A $ est un voisinage de $ x^\ast $. On appelle intérieur de $ A $ l'ensemble des points intérieurs à $ A $ et on le note $ \mathring{A} $.
+ Soient $ \mathbb{R}^n $ un espace topologique, $ A \subset \mathbb{R}^n $ et $ x^\ast \in \mathbb{R}^n $.
+ \newline
+ On dit que $ x^\ast $ est \textbf{intérieur} à $ A $ si $ A $ est un voisinage de $ x^\ast $. On appelle intérieur de $ A $ l'ensemble des points intérieurs à $ A $ et on le note $ \mathring{A} $.
\end{Def}
+\begin{Rmq}
+ $ A \subset \mathbb{R}^n $ est un ouvert $ \iff A = \mathring{A} $.
+\end{Rmq}
\begin{Def}
-Soient $ \mathbb{R}^n $ un espace topologique, $ A \subset \mathbb{R}^n $ et $ x^\ast \in \mathbb{R}^n $.
-\newline
-On dit que $ x^\ast $ est \textbf{adhérent} à $ A $ si et seulement si $ \forall V \in \mathcal{V}(x^\ast) \ A \cap V \neq \emptyset $. On appelle adhérence de $ A $ l'ensemble des points adhérents à $ A $ et on le note $ \overline{A} $.
+ Soient $ \mathbb{R}^n $ un espace topologique, $ A \subset \mathbb{R}^n $ et $ x^\ast \in \mathbb{R}^n $.
+ \newline
+ On dit que $ x^\ast $ est \textbf{adhérent} à $ A $ si et seulement si $ \forall V \in \mathcal{V}(x^\ast) \ A \cap V \neq \emptyset $. On appelle adhérence de $ A $ l'ensemble des points adhérents à $ A $ et on le note $ \overline{A} $.
\end{Def}
+\begin{Rmq}
+ $ A \subset \mathbb{R}^n $ est un fermé $ \iff A = \overline{A} $.
+\end{Rmq}
\begin{Def}
-Soient une fonction $ f: \mathbb{R}^n \longrightarrow \mathbb{R} $ et $ x^\ast \in \mathbb{R}^n $.
-\newline
-On dit que $ f $ est continue en $ x^\ast $ si
-$$ \forall \varepsilon \in \mathbb{R}_{+}^{*} \ \exists \alpha \in \mathbb{R}_{+}^{*} \ \forall x \in \mathbb{R}^n \ \norme{x - x^\ast} \leq \alpha \implies |f(x) - f(x^\ast)| \leq \varepsilon $$
+ Soient une fonction $ f: \mathbb{R}^n \longrightarrow \mathbb{R} $ et $ x^\ast \in \mathbb{R}^n $.
+ \newline
+ On dit que $ f $ est continue en $ x^\ast $ si
+ $$ \forall \varepsilon \in \mathbb{R}_{+}^{*} \ \exists \alpha \in \mathbb{R}_{+}^{*} \ \forall x \in \mathbb{R}^n \ \norme{x - x^\ast} \leq \alpha \implies |f(x) - f(x^\ast)| \leq \varepsilon $$
\end{Def}
\begin{Def}
Soient $ k \in \{ 1,\ldots,n \} $ et une fonction $ f: \mathbb{R}^n \longrightarrow \mathbb{R} $.
\begin{Rmq}
$ \forall h \in \mathbb{R}^n \ d_{x^\ast}f(h) = \langle \nabla f(x^\ast),h \rangle $
\end{Rmq}
+\begin{Def}
+ Soit $ f: \mathbb{R}^n \longrightarrow \mathbb{R} $ un fonction de classe $ \mathcal{C}^2 $.
+ On définit la matrice hessienne de $ f $ en $ x^\ast $ par :
+ $$ H[f](x^\ast) =
+ \begin{pmatrix}
+ \frac{\partial^2 f}{\partial x_1^2}(x^\ast) & \cdots & \frac{\partial^2 f}{\partial x_1\partial x_n}(x^\ast) \\
+ \vdots & & \vdots \\
+ \frac{\partial^2 f}{\partial x_n\partial x_1}(x^\ast) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(x^\ast)
+ \end{pmatrix} $$
+\end{Def}
+\begin{Prop}
+ \begin{enumerate}
+ \item $ H[f](x^\ast) $ est une matrice symétrique (Théorème de symétrie de Schwarz).
+ \item On a le développement de Taylor-Young à l'ordre 2 suivant :
+ $$ f(x^\ast + v) = f(x^\ast) + \langle \nabla f(x^\ast),v \rangle + \frac{1}{2} v^\top H[f](x^\ast) v + \varepsilon(v) $$
+ avec $ \frac{|\varepsilon(v)|}{\norme{v}} \rightarrow 0 $ quand $ \norme{v} \rightarrow 0 $.
+ \end{enumerate}
+\end{Prop}
\subsection{Conditions d'existence d'un extremum}
On peut démontrer que $ \mathcal{C }$ est un ensemble fermé de $ \mathbb{R}^n $ si $ g $ et $ h $ sont continues.
On peut en déduire que si $ J $ est continue, $ \mathcal{C }$ est un ensemble fermé et borné de $ \mathbb{R}^n $.
\begin{Th}[Théorème de Weierstrass]
-Soient $ \mathcal{C} \neq \emptyset \subset \mathbb{R}^n $ un fermé borné et $ f : \mathcal{C} \longrightarrow \mathbb{R} $ une fonction continue.
-\newline
-Alors : $$ \exists x^\ast \in \mathcal{C} \ \forall x \in \mathcal{C} \ f(x) \geq f(x^\ast) $$
-Autrement dit $ x^\ast $ est un minimum global de $ J $ sur $ \mathcal{C} $.
-\newline
-De la même façon, il existe un maximum global de $ J $ sur $ \mathcal{C} $.
+ Soient $ \mathcal{C} \neq \emptyset \subset \mathbb{R}^n $ un fermé borné et $ f : \mathcal{C} \longrightarrow \mathbb{R} $ une fonction continue.
+ \newline
+ Alors : $$ \exists x^\ast \in \mathcal{C} \ \forall x \in \mathcal{C} \ f(x) \geq f(x^\ast) $$
+ Autrement dit $ x^\ast $ est un minimum global de $ J $ sur $ \mathcal{C} $.
+ \newline
+ De la même façon, il existe un maximum global de $ J $ sur $ \mathcal{C} $.
\end{Th}
On en déduit que $ \mathcal{P} $ admet au moins une solution dans le cas où $ J, g ,h $ sont continues \cite{LJK,RON}. L'étude de la convexité de $ J $ sur $ \mathcal{C} $ permet d'explorer l'unicité de la solution \cite{LJK,RON}.
\subsection{Conditions de caractérisation d'un extremum}
-Dans le cas où $ J, g, h $ sont continûment différentiable et ses dérivées sont continues (c'est à dire de classe $ \mathcal{C}^1 $), la recherche du mimimum consiste à faire une descente par gradient [section \ref{descente}] de $ J $ sur $ \mathcal{C} $ avec comme critère d'arrêt : $ x_i = \displaystyle\min_{x \in \mathcal{C}} J(x) \iff \forall \varepsilon \in \mathbb{R}_{+}^{*} \ \norme{\nabla J(x_i)} < \varepsilon $, $ i \in \mathbb{N} $ \cite{FEA}.
+Dans le cas où $ J, g, h $ sont continûment différentiable et ses dérivées sont continues (c'est à dire de classe $ \mathcal{C}^1 $), la recherche du mimimum consiste à faire des descentes par gradient [section \ref{descente}] de $ J $ sur $ \mathcal{C} $ avec comme critère d'arrêt : $ x_i = \displaystyle\min_{x \in \mathcal{C}} J(x) \iff \forall \varepsilon \in \mathbb{R}_{+}^{*} \ \norme{\nabla J(x_i)} < \varepsilon $, $ i \in \mathbb{N} $ \cite{FEA}.
\newline
-On peut en déduire que une condition nécessaire et suffisante pour que $ x^\ast \in \mathring{\mathcal{C}} $ soit un des extremums locaux de $ J $ est que $ \nabla J(x^\ast) = 0 $. Mais si $ x^\ast \in \overline{\mathcal{C}}\setminus\mathring{\mathcal{C}} $ (la frontière de $ \mathcal{C} $) alors $ \nabla J(x^\ast) $ n'est pas nécessairement nul. Il sera par conséquent nécessaire de trouver d'autres caratérisations d'un extremum \cite{FEA,WAL}.
+On peut en déduire que une condition nécessaire et suffisante pour que $ x^\ast \in \mathring{\mathcal{C}} $ soit un des extremums locaux de $ J $ est que $ \nabla J(x^\ast) = 0 $. Mais si $ x^\ast \in \overline{\mathcal{C}}\setminus\mathring{\mathcal{C}} $ (la frontière de $ \mathcal{C} $) alors $ \nabla J(x^\ast) $ n'est pas nécessairement nul. Il sera par conséquent nécessaire de trouver d'autres caratérisations d'un extremum local \cite{FEA,WAL}.
\subsubsection{Conditions de Karuch-Kuhn-Tucker}\label{KKT}
\begin{Th}
-Soient $ x^\ast \in \mathbb{R}^n $, $ I = \{ 1,\ldots,p \} $ et $ J = \{ 1,\ldots,q \} $.
-\newline
-Les conditions nécessaires pour que $ x^\ast \in \mathcal{C}$ soit un minimum local de $ J $ sont :
-\newline
-\newline
-\centerline{$ \{ \nabla g_1(x^\ast),\ldots,\nabla g_p(x^\ast),\nabla h_1(x^\ast),\ldots,\nabla h_q(x^\ast) \} $ sont linéairement indépendants.}
-\newline
-\newline
-et
-$$ \forall i \in I \ \exists \mu_i \in \mathbb{R}_{+} \land \forall j \in J \ \exists \lambda_j \in \mathbb{R} \ \nabla J(x^\ast) + \sum_{i \in I}\mu_i{\nabla g_i(x^\ast)} + \sum_{j \in J}\lambda_j{\nabla h_j(x^\ast)} = 0 \land \forall i \in I \ \mu_i \nabla g_i(x^\ast) = 0 $$
-On appelle $ (\mu_i)_{i \in I}$ les multiplicateurs de Kuhn-Tucker et $ (\lambda_j)_{j \in J}$ les multiplicateurs de Lagrange.
+ Soient $ x^\ast \in \mathbb{R}^n $, $ I = \{ 1,\ldots,p \} $ et $ J = \{ 1,\ldots,q \} $.
+ \newline
+ Les conditions nécessaires pour que $ x^\ast \in \mathcal{C}$ soit un minimum local de $ J $ sont :
+ \newline
+ \newline
+ \centerline{$ \{ \nabla g_1(x^\ast),\ldots,\nabla g_p(x^\ast),\nabla h_1(x^\ast),\ldots,\nabla h_q(x^\ast) \} $ sont linéairement indépendants.}
+ \newline
+ \newline
+ et
+ $$ \forall i \in I \ \exists \mu_i \in \mathbb{R}_{+} \land \forall j \in J \ \exists \lambda_j \in \mathbb{R} \ \nabla J(x^\ast) + \sum_{i \in I}\mu_i{\nabla g_i(x^\ast)} + \sum_{j \in J}\lambda_j{\nabla h_j(x^\ast)} = 0 \land \forall i \in I \ \mu_i \nabla g_i(x^\ast) = 0 $$
+ On appelle $ (\mu_i)_{i \in I}$ les multiplicateurs de Kuhn-Tucker et $ (\lambda_j)_{j \in J}$ les multiplicateurs de Lagrange.
\end{Th}
\begin{proof}
-Elle repose sur le lemme de Farkas \cite{FEA,RON}.
+ Elle repose sur le lemme de Farkas \cite{FEA,RON}.
\end{proof}
Il est à noter que une condition d'égalité peut se répresenter par deux conditions d'inégalité : $ \forall x \in \mathbb{R}^n \ \forall i \in \{ 1,\ldots,q \} \ h_i(x) = 0 \iff h_i(x) \leq 0 \land h_i(x) \geq 0 $ \cite{FEA}, ce qui peut permettre de réécrire le problème $ \mathcal{P} $ en éliminant les contraintes d'égalités et change la forme des conditions \textit{KKT} à vérifier mais rajoute $ 2q $ conditions d'inégalités et donc $ 2q $ multiplicateurs de Kuhn-Tucker.
\section{Methode de descente}\label{descente}
Partant d’un point $ x_0 \in \mathbb{R}^n $ arbitrairement choisi, un algorithme de descente va chercher à générer une suite d’itérés $ (x_k)_{k \in \mathbb{N}} $ de $ \mathbb{R}^n $ définie par :
-$$ x_{k+1} = x_k + s_kd_k $$ où $ s_k,d_k \in \mathbb{R}^n $ et avec
+$$ x_{k+1} = x_k + s_kd_k $$ où $ s_k \in \mathbb{R}_{+}^{*},d_k \in \mathbb{R}^n $ et avec
$$ \forall k \in \mathbb{N} \ J(x_{k+1}) \leq J(x_k) $$
Un tel algorithme est ainsi déterminé par deux éléments à chaque étape $ k $ : le choix de la direction $ d_k $ appelée direction de descente, et le choix de la taille du pas $ s_k $ à faire dans la direction $ d_k $. Cette étape est appelée \textit{recherche linéaire}.
\subsection{Définition d'une direction de descente}
-Un vecteur $ d \in \mathbb{R}^n $ est une direction de descente pour $ J $ à partir d’un point $ x_0 \in \mathbb{R}^n $ si $ t \longmapsto f(x_0 + td) $ est décroissante en $ t = 0 $, c’est-à-dire :
+Un vecteur $ d \in \mathbb{R}^n $ est une direction de descente pour $ J $ à partir d’un point $ x_0 \in \mathbb{R}^n $ si $ t \longmapsto f(x_0 + td) $ est strictement décroissante en $ t = 0 $, c’est-à-dire :
$$ \exists \eta \in \mathbb{R}_{+}^{*} \ \forall t \in ]0,\eta] \ J(x_0 + td) < J(x_0) $$
Il est donc important d’analyser le comportement de la fonction $ J $ dans certaines direc-
tions.
\begin{Prop}
-Soient $ J : \mathbb{R}^n \longrightarrow \mathbb{R} $ différentiable et $ d \in \mathbb{R}^n $.
-\newline
-d est un vecteur de descente de $ J $ en $ x_0 \in \mathbb{R}^n $ ssi :
-$$ \nabla J(x_0)^\top d < 0 $$
-De plus
-$$ \forall \beta < 1 \in \mathbb{R}_{+} \ \exists \eta \in \mathbb{R}_{+}^{*} \ \forall t \in ]0,\eta] \ J(x_0 + td) < J(x_0) + t\beta \nabla J(x_0)^\top d < J(x_0) $$
+ Soient $ J : \mathbb{R}^n \longrightarrow \mathbb{R} $ différentiable et $ d \in \mathbb{R}^n $.
+ \newline
+ d est un vecteur de descente de $ J $ en $ x_0 \in \mathbb{R}^n $ ssi :
+ $$ \nabla J(x_0)^\top d < 0 $$
+ De plus
+ $$ \forall \beta < 1 \in \mathbb{R}_{+} \ \exists \eta \in \mathbb{R}_{+}^{*} \ \forall t \in ]0,\eta] \ J(x_0 + td) < J(x_0) + t\beta \nabla J(x_0)^\top d < J(x_0) $$
\end{Prop}
\begin{proof}
-Elle s'effectue en utilisant le développement de Taylor-Young de l’application $ t \longmapsto f(x_0 + td) $ à l’ordre 1.
+ Elle s'effectue en utilisant le développement de Taylor-Young de l’application $ t \longmapsto f(x_0 + td) $ à l’ordre 1.
\end{proof}
Cette dernière inégalité garantit une décroissance minimum de la fonction $ J $ dans la
direction $ d $ et peut se traduire par : la décroissance de la fonction $ J $, en effectuant un pas de longueur $ t $ dans la direction $ d $ , est au moins égale à la longueur du pas multipliée par une fraction de la pente. Le schéma général d’un algorithme de descente est alors le suivant :
\begin{enumerate}
\item $ k := 0 $
\item Tant que "test d’arrêt" non satisfait,
- \begin{enumerate}
- \item Trouver une direction de descente $ d_k $ telle que : $ \nabla J(x_k)^\top d_k < 0 $.
- \item \textit{Recherche linéaire} : Choisir un pas $ s_k > 0 $ à faire dans cette direction et tel que : $$ J(x_k + s_kd_k) < J(x_k) $$.
- \item Mise à jour : $ x_{k+1} = x_k + s_kd_k; \ k := k + 1 $.
- \end{enumerate}
- \item Retouner $ x_k $.
+ \begin{enumerate}
+ \item Trouver une direction de descente $ d_k $ telle que : $ \nabla J(x_k)^\top d_k < 0 $.
+ \item \textit{Recherche linéaire} : Choisir un pas $ s_k > 0 $ à faire dans cette direction et tel que : $$ J(x_k + s_kd_k) < J(x_k). $$
+ \item Mise à jour : $ x_{k+1} = x_k + s_kd_k; \ k := k + 1 $.
+ \end{enumerate}
+ \item Retourner $ x_k $.
\end{enumerate}
\hrulefill
\item la stratégie de Cauchy : $ d_k = -\nabla J(x_k) $, conduisant aux \textit{algorithmes de gradient}.
\item la stratégie de Newton : $ d_k = -H[J](x_k)^{-1} \nabla J(x_k) $, conduisant aux \textit{algorithmes Newtoniens}.
\end{itemize}
-Remarquons que si $ x_k $ est un point stationnaire ($ \nabla J(x_k) = 0 $) non optimal alors toutes ces directions sont nulles et aucun de ces algorithmes ne pourra progresser. Ce problème
-peut être résolu en utilisant des approches de type région de confiance qui ne seront pas
-étudiées dans le cadre de ce projet.
+Remarquons que si $ x_k $ est un point stationnaire ($ \iff \nabla J(x_k) = 0 $) non optimal alors toutes ces directions sont nulles et aucun de ces algorithmes ne pourra progresser. Ce problème peut être résolu en utilisant des approches de type région de confiance qui ne seront pas étudiées dans le cadre de ce projet.
\subsection{Critère d’arrêt}
-Soit $ x^\ast $ un minimum local du critère $ J $ à optimiser. Supposons que l’on choisisse comme test d’arrêt dans l’algorithme de descente modèle, le critère idéal : "$ x_k = x^\ast $". Dans un monde idéal (i.e. en supposant tous les calculs exacts et la capacité de calcul illimitée), soit l’algorithme s’arrête après un nombre fini d’itérations, soit il construit (théoriquement) une suite infinie $ x_0,x_1,\ldots,x_k,\ldots $ de points de $ \mathbb{R}^n $ qui converge vers $ x^\ast $.
+Soit $ x^\ast $ un minimum local de l'objectif $ J $ à optimiser. Supposons que l’on choisisse comme test d’arrêt dans l’algorithme de descente modèle, le critère idéal : "$ x_k = x^\ast $". Dans un monde idéal (i.e. en supposant tous les calculs exacts et la capacité de calcul illimitée), soit l’algorithme s’arrête après un nombre fini d’itérations, soit il construit (théoriquement) une suite infinie $ x_0,x_1,\ldots,x_k,\ldots $ de points de $ \mathbb{R}^n $ qui converge vers $ x^\ast $.
\newline
En pratique, un test d’arrêt devra être choisi pour garantir que l’algorithme s’arrête
toujours après un nombre fini d’itérations et que le dernier point calculé soit suffisamment
auquel cas l’algorithme s’arrête et fournit l’itéré courant $ x_k $ comme solution.
En pratique, le test d’optimalité n’est pas toujours satisfait et on devra faire appel à
-d’autres critères (fondés sur l’expérience du numérique) :
+d’autres critères fondés sur l’expérience du numérique :
\begin{itemize}
\item Stagnation de la solution : $ \norme{x_{k+1} - x_k} < \varepsilon(1 + \norme{x_k}) $.
\item Stagnation de la valeur courante : $ |J(x_{k+1}) - J(x_k)| < \varepsilon(1 + |J (x_k)|) $.
\newline
Critère d’arrêt =
\begin{tabular}{l}
- Test d’optimalité satisfait \\
+ Test d’optimalité satisfait \\
OU (Stagnation de la valeur courante ET Stagnation de la solution) \\
OU Nombre d’itérations maximum autorisé dépassé
\end{tabular}
On appelle $ \varphi : s \in \mathbb{R} \longmapsto J(x + sd)$ la fonction mérite associée à $ J $ en $ x $.
\end{Def}
\begin{Def}
- Dans le cas où $ J, g, h $ sont de classe $ \mathcal{C}^1 $, on dit que un algorithme de descente converge ssi
+ Dans le cas où $ J $ est différentiable sur $ \mathcal{C} $, on dit que un algorithme de descente converge ssi
$$ \lim\limits_{k \rightarrow +\infty} \norme{\nabla J(x_k)} = 0 $$
\end{Def}
\newline
En sommant ces inégalités pour $ k $ variant de $ 0 $ à $ N - 1 $, on obtient :
$$ \forall N \in \mathbb{N} \ J(x_0) - J(x_N) \geq c \sum_{i=0}^{N-1}\norme{\nabla J(x_i)}^2 $$
-Si $ J $ est bornée inférieurement, alors nécessairement $ J(x_0 ) - J(x_N) $ est majorée et donc la somme partielle est majorée, et donc la série $ (\sum_{i=0}^{N-1}\norme{\nabla J(x_i)}^2)_{N \in \mathbb{N}} $ converge, ce qui implique :
+Si $ J $ est bornée inférieurement, alors nécessairement $ J(x_0 ) - J(x_N) $ est majorée et donc la somme partielle est majorée, et donc la série $ (\sum\limits_{i=0}^{N-1}\norme{\nabla J(x_i)}^2)_{N \in \mathbb{N}} $ converge, ce qui implique :
$$ \lim\limits_{k \rightarrow +\infty} \norme{\nabla J(x_k)} = 0 $$
L'étude plus détaillée de différents algorithmes de descente qui utilisent différentes méthodes de recherche linéaire pour optimiser $ \varphi $ et le choix d'une direction ainsi que leurs convergences sort du cadre de ce projet.