Signed-off-by: Jérôme Benoit <jerome.benoit@piment-noir.org>
self.__optuna_hp = study.best_params
# log params
for key, value in self.__optuna_hp.items():
- logger.info(f"Optuna hyperopt {key:>20s} : {value}")
+ logger.info(f"Optuna hyperopt | {key:>20s} : {value}")
logger.info(
- f"Optuna hyperopt {'best objective value':>20s} : {study.best_value}"
+ f"Optuna hyperopt | {'best objective value':>20s} : {study.best_value}"
)
train_window = self.__optuna_hp.get("train_period_candles")
)
if candle_diff < 0:
logger.warning(
- f"Fit live predictions not warmed up yet. Still {abs(candle_diff)} candles to go"
+ f"{pair} fit live predictions not warmed up yet. Still {abs(candle_diff)} candles to go"
)
warmed_up = False
self.__optuna_hp = study.best_params
# log params
for key, value in self.__optuna_hp.items():
- logger.info(f"Optuna hyperopt {key:>20s} : {value}")
+ logger.info(f"Optuna hyperopt | {key:>20s} : {value}")
logger.info(
- f"Optuna hyperopt {'best objective value':>20s} : {study.best_value}"
+ f"Optuna hyperopt | {'best objective value':>20s} : {study.best_value}"
)
train_window = self.__optuna_hp.get("train_period_candles")
)
if candle_diff < 0:
logger.warning(
- f"Fit live predictions not warmed up yet. Still {abs(candle_diff)} candles to go"
+ f"{pair} fit live predictions not warmed up yet. Still {abs(candle_diff)} candles to go"
)
warmed_up = False