pred_df_full = (
self.dd.historic_predictions[pair].tail(num_candles).reset_index(drop=True)
)
- pred_df_sorted = pd.DataFrame()
- for label in pred_df_full.keys():
- if pred_df_full[label].dtype == object:
- continue
- pred_df_sorted[label] = pred_df_full[label]
-
- # pred_df_sorted = pred_df_sorted
- for col in pred_df_sorted:
- pred_df_sorted[col] = pred_df_sorted[col].sort_values(
- ascending=False, ignore_index=True
- )
- frequency = num_candles / (
- self.freqai_info["feature_parameters"]["label_period_candles"] * 2
- )
- max_pred = pred_df_sorted.iloc[: int(frequency)].mean()
- min_pred = pred_df_sorted.iloc[-int(frequency) :].mean()
if not warmed_up:
dk.data["extra_returns_per_train"]["&s-maxima_sort_threshold"] = 2
dk.data["extra_returns_per_train"]["&s-minima_sort_threshold"] = -2
else:
+ pred_df_sorted = pd.DataFrame()
+ for label in pred_df_full.keys():
+ if pred_df_full[label].dtype == object:
+ continue
+ pred_df_sorted[label] = pred_df_full[label]
+
+ # pred_df_sorted = pred_df_sorted
+ for col in pred_df_sorted:
+ pred_df_sorted[col] = pred_df_sorted[col].sort_values(
+ ascending=False, ignore_index=True
+ )
+ frequency = num_candles / (
+ self.freqai_info["feature_parameters"]["label_period_candles"] * 2
+ )
+ max_pred = pred_df_sorted.iloc[: int(frequency)].mean()
+ min_pred = pred_df_sorted.iloc[-int(frequency) :].mean()
dk.data["extra_returns_per_train"]["&s-maxima_sort_threshold"] = max_pred[
"&s-extrema"
]
pred_df_full = (
self.dd.historic_predictions[pair].tail(num_candles).reset_index(drop=True)
)
- pred_df_sorted = pd.DataFrame()
- for label in pred_df_full.keys():
- if pred_df_full[label].dtype == object:
- continue
- pred_df_sorted[label] = pred_df_full[label]
-
- # pred_df_sorted = pred_df_sorted
- for col in pred_df_sorted:
- pred_df_sorted[col] = pred_df_sorted[col].sort_values(
- ascending=False, ignore_index=True
- )
- frequency = num_candles / (
- self.freqai_info["feature_parameters"]["label_period_candles"] * 2
- )
- max_pred = pred_df_sorted.iloc[: int(frequency)].mean()
- min_pred = pred_df_sorted.iloc[-int(frequency) :].mean()
if not warmed_up:
dk.data["extra_returns_per_train"]["&s-maxima_sort_threshold"] = 2
dk.data["extra_returns_per_train"]["&s-minima_sort_threshold"] = -2
else:
+ pred_df_sorted = pd.DataFrame()
+ for label in pred_df_full.keys():
+ if pred_df_full[label].dtype == object:
+ continue
+ pred_df_sorted[label] = pred_df_full[label]
+
+ # pred_df_sorted = pred_df_sorted
+ for col in pred_df_sorted:
+ pred_df_sorted[col] = pred_df_sorted[col].sort_values(
+ ascending=False, ignore_index=True
+ )
+ frequency = num_candles / (
+ self.freqai_info["feature_parameters"]["label_period_candles"] * 2
+ )
+ max_pred = pred_df_sorted.iloc[: int(frequency)].mean()
+ min_pred = pred_df_sorted.iloc[-int(frequency) :].mean()
dk.data["extra_returns_per_train"]["&s-maxima_sort_threshold"] = max_pred[
"&s-extrema"
]