https://github.com/sponsors/robcaulk
"""
- version = "3.7.110"
+ version = "3.7.111"
@cached_property
def _optuna_config(self) -> dict[str, Any]:
"n_startup_trials": 15,
"n_trials": 36,
"timeout": 7200,
- "label_candles_step": 2,
+ "label_candles_step": 1,
"train_candles_step": 10,
"expansion_ratio": 0.4,
"seed": 1,
fit_live_predictions_candles
// fit_live_predictions_candles_largest_divisor,
candles_step,
+ 12,
),
candles_step,
)
max_label_period_candles: int = round_to_nearest_int(
- max(fit_live_predictions_candles // 4, min_label_period_candles),
+ max(fit_live_predictions_candles // 24, min_label_period_candles, 22),
candles_step,
)
label_period_candles = trial.suggest_int(
max_label_period_candles,
step=candles_step,
)
- label_natr_ratio = trial.suggest_float("label_natr_ratio", 2.0, 38.0, step=0.01)
+ label_natr_ratio = trial.suggest_float("label_natr_ratio", 2.0, 44.0, step=0.01)
label_period_cycles = fit_live_predictions_candles / label_period_candles
df = df.iloc[-(max(2, int(label_period_cycles)) * label_period_candles) :]
INTERFACE_VERSION = 3
def version(self) -> str:
- return "3.3.150"
+ return "3.3.151"
timeframe = "5m"
take_profit_price = (
trade.open_rate + (-1 if trade.is_short else 1) * take_profit_distance
)
- trade_take_profit_price_history = self.safe_append_trade_take_profit_price(
- trade, take_profit_price
- )
-
- if exit_stage not in self.partial_exit_stages:
- if not trade_take_profit_price_history:
- return None
- trade_take_profit_price_history = np.asarray(
- trade_take_profit_price_history
- )
- return (
- np.min(trade_take_profit_price_history)
- if trade.is_short
- else np.max(trade_take_profit_price_history)
- )
+ self.safe_append_trade_take_profit_price(trade, take_profit_price)
return take_profit_price