model_training_parameters,
) -> float:
min_train_window: int = fit_live_predictions_candles * 2
- max_train_window: int = (
- len(X) if len(X) > min_train_window else (min_train_window + len(X))
- )
+ max_train_window: int = max(len(X), min_train_window)
train_window = trial.suggest_int(
"train_period_candles", min_train_window, max_train_window, step=candles_step
)
train_weights = train_weights[-train_window:]
min_test_window: int = int(min_train_window * test_size)
- max_test_window: int = (
- len(X_test)
- if len(X_test) > min_test_window
- else (min_test_window + len(X_test))
- )
+ max_test_window: int = max(len(X_test), min_test_window)
test_window = trial.suggest_int(
"test_period_candles", min_test_window, max_test_window, step=candles_step
)
)
y_pred = model.predict(X_test)
- min_label_period_candles: int = fit_live_predictions_candles // 60
- max_label_period_candles: int = fit_live_predictions_candles // 6
+ min_label_period_candles: int = max(fit_live_predictions_candles // 200, 10)
+ max_label_period_candles: int = max(
+ fit_live_predictions_candles // 6, min_label_period_candles
+ )
label_period_candles = trial.suggest_int(
"label_period_candles",
min_label_period_candles,
max_label_period_candles,
+ step=candles_step,
)
y_test_length = len(y_test)
y_pred_length = len(y_pred)
model_training_parameters,
) -> float:
min_train_window: int = fit_live_predictions_candles * 2
- max_train_window: int = (
- len(X) if len(X) > min_train_window else (min_train_window + len(X))
- )
+ max_train_window: int = max(len(X), min_train_window)
train_window = trial.suggest_int(
"train_period_candles", min_train_window, max_train_window, step=candles_step
)
train_weights = train_weights[-train_window:]
min_test_window: int = int(min_train_window * test_size)
- max_test_window: int = (
- len(X_test)
- if len(X_test) > min_test_window
- else (min_test_window + len(X_test))
- )
+ max_test_window: int = max(len(X_test), min_test_window)
test_window = trial.suggest_int(
"test_period_candles", min_test_window, max_test_window, step=candles_step
)
)
y_pred = model.predict(X_test)
- min_label_period_candles: int = fit_live_predictions_candles // 60
- max_label_period_candles: int = fit_live_predictions_candles // 6
+ min_label_period_candles: int = max(fit_live_predictions_candles // 200, 10)
+ max_label_period_candles: int = max(
+ fit_live_predictions_candles // 6, min_label_period_candles
+ )
label_period_candles = trial.suggest_int(
"label_period_candles",
min_label_period_candles,
max_label_period_candles,
+ step=candles_step,
)
y_test_length = len(y_test)
y_pred_length = len(y_pred)