finally:
_eval_env_check.close()
- logger.info("Populating environments: %s", self.n_envs)
+ logger.info(
+ "Populating train %s and eval %s environments",
+ self.n_envs,
+ self.n_eval_envs,
+ )
self.train_env, self.eval_env = self._get_train_and_eval_environments(
dk,
train_df=train_df,
callbacks: List[BaseCallback] = []
no_improvement_callback = None
rollout_plot_callback = None
- verbose = int(self.get_model_params().get("verbose", 0))
+ verbose = self.get_model_params().get("verbose", 0)
if self.max_no_improvement_evals:
no_improvement_callback = StopTrainingOnNoModelImprovement(
if train_timesteps <= 0:
raise ValueError("train_features dataframe has zero length")
test_df = data_dictionary.get("test_features")
- test_timesteps = len(test_df)
+ eval_timesteps = len(test_df)
train_cycles = max(1, int(self.rl_config.get("train_cycles", 25)))
total_timesteps = (
(train_timesteps * train_cycles + self.n_envs - 1) // self.n_envs
) * self.n_envs
train_days = steps_to_days(train_timesteps, self.config.get("timeframe"))
- test_days = steps_to_days(test_timesteps, self.config.get("timeframe"))
+ eval_days = steps_to_days(eval_timesteps, self.config.get("timeframe"))
total_days = steps_to_days(total_timesteps, self.config.get("timeframe"))
logger.info("Model: %s", self.model_type)
total_timesteps,
total_days,
)
- logger.info("Test: %s steps (%s days)", test_timesteps, test_days)
+ logger.info(
+ "Eval: %s steps (%s days), %s envs",
+ eval_timesteps,
+ eval_days,
+ self.n_eval_envs,
+ )
logger.info("Multiprocessing: %s", self.multiprocessing)
logger.info("Eval multiprocessing: %s", self.eval_multiprocessing)
logger.info("Frame stacking: %s", self.frame_stacking)