"&s-minima_threshold": -2,
"&s-maxima_threshold": 2,
"label_period_candles": 24,
- "label_natr_ratio": 8.5,
+ "label_natr_ratio": 9.0,
"hp_rmse": -1,
"train_rmse": -1
},
"label_period_candles", 24
),
"label_natr_ratio": float(
- self.ft_params.get("label_natr_ratio", 8.5)
+ self.ft_params.get("label_natr_ratio", 9.0)
),
}
)
max_label_period_candles,
step=candles_step,
)
- label_natr_ratio = trial.suggest_float("label_natr_ratio", 8.5, 12.5, step=0.05)
+ label_natr_ratio = trial.suggest_float("label_natr_ratio", 9.0, 12.0, step=0.05)
label_period_cycles = fit_live_predictions_candles / label_period_candles
df = df.iloc[-(max(2, int(label_period_cycles)) * label_period_candles) :]
),
"label_natr_ratio": float(
self.freqai_info["feature_parameters"].get(
- "label_natr_ratio", 8.5
+ "label_natr_ratio", 9.0
)
),
}
if label_natr_ratio and isinstance(label_natr_ratio, float):
return label_natr_ratio
return float(
- self.freqai_info["feature_parameters"].get("label_natr_ratio", 8.5)
+ self.freqai_info["feature_parameters"].get("label_natr_ratio", 9.0)
)
def set_label_natr_ratio(self, pair: str, label_natr_ratio: float) -> None:
def zigzag(
df: pd.DataFrame,
natr_period: int = 14,
- natr_ratio: float = 8.5,
+ natr_ratio: float = 9.0,
) -> tuple[list[int], list[float], list[TrendDirection], list[float]]:
n = len(df)
if df.empty or n < natr_period: