start_time = time.time()
if self.hyperopt:
- best_trial_params = self.study(dk, total_timesteps)
- if best_trial_params is None:
+ best_params = self.optimize(dk, total_timesteps)
+ if best_params is None:
logger.error(
"Hyperopt failed. Using default configured model params instead"
)
- best_trial_params = self.get_model_params()
- model_params = best_trial_params
+ best_params = self.get_model_params()
+ model_params = best_params
else:
model_params = self.get_model_params()
logger.info("%s params: %s", self.model_type, model_params)
if "PPO" in self.model_type:
- min_steps = 2 * model_params.get("n_steps", 0) * self.n_envs
- if total_timesteps < min_steps:
+ min_timesteps = 2 * model_params.get("n_steps", 0) * self.n_envs
+ if total_timesteps < min_timesteps:
logger.warning(
"total_timesteps=%s is less than 2*n_steps*n_envs=%s. This may lead to suboptimal training results",
total_timesteps,
- min_steps,
+ min_timesteps,
)
if self.activate_tensorboard:
except (ValueError, KeyError):
return False
- def study(
+ def optimize(
self, dk: FreqaiDataKitchen, total_timesteps: int
) -> Optional[Dict[str, Any]]:
"""