https://github.com/sponsors/robcaulk
"""
- version = "3.7.103"
+ version = "3.7.104"
@cached_property
def _optuna_config(self) -> dict[str, Any]:
)
pred_extrema = pred_df.get(EXTREMA_COLUMN).iloc[-thresholds_candles:]
thresholds_smoothing = str(
- self.freqai_info.get("prediction_thresholds_smoothing", "exp_weighted_mean")
+ self.freqai_info.get("prediction_thresholds_smoothing", "mean")
)
thresholds_smoothing_methods = {
"exp_weighted_mean",
}
if thresholds_smoothing == "exp_weighted_mean":
thresholds_alpha = float(
- self.freqai_info.get("prediction_thresholds_alpha", 75.0)
+ self.freqai_info.get("prediction_thresholds_alpha", 100.0)
)
return QuickAdapterRegressorV3.exp_weighted_mean_min_max(
pred_extrema, thresholds_alpha
"cityblock",
"correlation",
"cosine",
- "dice",
+ # "dice",
"euclidean",
- "hamming",
- "jaccard",
+ # "hamming",
+ # "jaccard",
"jensenshannon",
- "kulczynski1",
+ # "kulczynski1",
"mahalanobis",
- "matching",
+ # "matching",
"minkowski",
- "rogerstanimoto",
- "russellrao",
+ # "rogerstanimoto",
+ # "russellrao",
"seuclidean",
- "sokalmichener",
- "sokalsneath",
+ # "sokalmichener",
+ # "sokalsneath",
"sqeuclidean",
- "yule",
+ # "yule",
"hellinger",
"shellinger",
"geometric_mean",
"cityblock",
"correlation",
"cosine",
- "dice",
+ # "dice",
"euclidean",
- "hamming",
- "jaccard",
+ # "hamming",
+ # "jaccard",
"jensenshannon",
- "kulczynski1", # deprecated since version 1.15.0
+ # "kulczynski1", # deprecated since version 1.15.0
"mahalanobis",
- "matching",
+ # "matching",
"minkowski",
- "rogerstanimoto",
- "russellrao",
+ # "rogerstanimoto",
+ # "russellrao",
"seuclidean",
- "sokalmichener", # deprecated since version 1.15.0
- "sokalsneath",
+ # "sokalmichener", # deprecated since version 1.15.0
+ # "sokalsneath",
"sqeuclidean",
- "yule",
+ # "yule",
}:
cdist_kwargs = {"w": np_weights}
if metric in {
INTERFACE_VERSION = 3
def version(self) -> str:
- return "3.3.111"
+ return "3.3.112"
timeframe = "5m"
# {stage: (natr_ratio_percent, stake_percent)}
partial_exit_stages: dict[int, tuple[float, float]] = {
- 0: (0.4, 0.35),
- 1: (0.7, 0.75),
- 2: (0.9, 0.5),
+ 0: (0.4167, 0.4167),
+ 1: (0.6667, 0.25),
+ 2: (0.8333, 0.1667),
+ 3: (0.9167, 0.0833),
}
timeframe_minutes = timeframe_to_minutes(timeframe)