https://github.com/sponsors/robcaulk
"""
- version = "3.7.41"
+ version = "3.7.42"
@cached_property
def _optuna_config(self) -> dict:
def calculate_min_slope_strength(
pos: int,
lookback_period: int = 20,
- min_value: float = 0.03,
- max_value: float = 0.07,
+ min_value: float = 0.5,
+ max_value: float = 1.5,
) -> float:
start = max(0, pos - lookback_period)
end = min(pos + 1, n)
next_confirmation_pos: int,
direction: TrendDirection,
extrema_threshold: float = 0.85,
- min_slope_volatility: float = 0.0095,
move_away_ratio: float = 0.25,
) -> bool:
next_start = next_confirmation_pos + 1
return False
slope_ok = False
- log_next_closes = np.log(next_closes)
- log_next_closes_std = np.std(log_next_closes)
- if len(next_closes) >= 2 and log_next_closes_std > min_slope_volatility:
+ if len(next_closes) >= 2:
+ log_next_closes = np.log(next_closes)
+ log_next_closes_std = np.std(log_next_closes)
weights = np.linspace(0.5, 1.5, len(log_next_closes))
log_next_slope = np.polyfit(
range(len(log_next_closes)), log_next_closes, 1, w=weights
def calculate_min_slope_strength(
pos: int,
lookback_period: int = 20,
- min_value: float = 0.03,
- max_value: float = 0.07,
+ min_value: float = 0.5,
+ max_value: float = 1.5,
) -> float:
start = max(0, pos - lookback_period)
end = min(pos + 1, n)
next_confirmation_pos: int,
direction: TrendDirection,
extrema_threshold: float = 0.85,
- min_slope_volatility: float = 0.0095,
move_away_ratio: float = 0.25,
) -> bool:
next_start = next_confirmation_pos + 1
return False
slope_ok = False
- log_next_closes = np.log(next_closes)
- log_next_closes_std = np.std(log_next_closes)
- if len(next_closes) >= 2 and log_next_closes_std > min_slope_volatility:
+ if len(next_closes) >= 2:
+ log_next_closes = np.log(next_closes)
+ log_next_closes_std = np.std(log_next_closes)
weights = np.linspace(0.5, 1.5, len(log_next_closes))
log_next_slope = np.polyfit(
range(len(log_next_closes)), log_next_closes, 1, w=weights