params = {
**self.model_training_parameters,
**{
+ "n_estimators": hp.get("n_estimators"),
"learning_rate": hp.get("learning_rate"),
"reg_alpha": hp.get("reg_alpha"),
"reg_lambda": hp.get("reg_lambda"),
def objective(trial, X, y, weights, X_test, y_test, params):
study_params = {
"objective": "rmse",
+ "n_estimators": trial.suggest_int("n_estimators", 100, 1000),
"learning_rate": trial.suggest_loguniform("learning_rate", 1e-8, 1.0),
"reg_alpha": trial.suggest_loguniform("reg_alpha", 1e-8, 10.0),
"reg_lambda": trial.suggest_loguniform("reg_lambda", 1e-8, 10.0),
params = {
**self.model_training_parameters,
**{
+ "n_estimators": hp.get("n_estimators"),
"learning_rate": hp.get("learning_rate"),
"gamma": hp.get("gamma"),
"reg_alpha": hp.get("reg_alpha"),
study_params = {
"objective": "reg:squarederror",
"eval_metric": "rmse",
+ "n_estimators": trial.suggest_int("n_estimators", 100, 1000),
"learning_rate": trial.suggest_loguniform("learning_rate", 1e-8, 1.0),
"gamma": trial.suggest_loguniform("gamma", 1e-8, 1.0),
"reg_alpha": trial.suggest_loguniform("reg_alpha", 1e-8, 10.0),