"label_period_candles"
] = self.__optuna_period_params[dk.pair].get("label_period_candles")
- model = LGBMRegressor(
- objective="regression", **model_training_parameters
- )
+ model = LGBMRegressor(objective="regression", **model_training_parameters)
eval_set, eval_weights = self.eval_set_and_weights(X_test, y_test, test_weights)
test_weights = test_weights[-test_window:]
# Fit the model
- model = LGBMRegressor(
- objective="regression", **model_training_parameters
- )
+ model = LGBMRegressor(objective="regression", **model_training_parameters)
model.fit(
X=X,
y=y,
model_training_parameters = {**model_training_parameters, **study_parameters}
# Fit the model
- model = LGBMRegressor(
- objective="regression", **model_training_parameters
- )
+ model = LGBMRegressor(objective="regression", **model_training_parameters)
model.fit(
X=X,
y=y,
dataframe["vwap_upperband"],
) = VWAPB(dataframe, 20, 1)
dataframe["%-vwap_width"] = (
- (dataframe["vwap_upperband"] - dataframe["vwap_lowerband"])
- / dataframe["vwap_middleband"]
- )
+ dataframe["vwap_upperband"] - dataframe["vwap_lowerband"]
+ ) / dataframe["vwap_middleband"]
dataframe["%-dist_to_vwap_upperband"] = get_distance(
dataframe["close"], dataframe["vwap_upperband"]
)