"n_trials": 36,
"timeout": 7200,
"candles_step": 10,
+ "expansion_factor": 0.4,
"seed": 1,
}
return {
}
ranges = copy.deepcopy(default_ranges)
- expansion_factor = 0.4 # ±40%
+ expansion_factor = self._optuna_config.get("expansion_factor")
if model_training_best_parameters:
for param, (default_min, default_max) in default_ranges.items():
center_value = model_training_best_parameters.get(param)
pivots_indices: list[int] = []
pivots_values: list[float] = []
pivots_directions: list[TrendDirection] = []
- pivots_scaled_natrs: list[float] = []
+ pivots_thresholds: list[float] = []
last_pivot_pos: int = -1
candidate_pivot_pos: int = -1
pivots_indices.append(indices[pos])
pivots_values.append(value)
pivots_directions.append(direction)
- pivots_scaled_natrs.append(thresholds[pos])
+ pivots_thresholds.append(thresholds[pos])
last_pivot_pos = pos
reset_candidate_pivot()
)
state = TrendDirection.UP
- return pivots_indices, pivots_values, pivots_directions, pivots_scaled_natrs
+ return pivots_indices, pivots_values, pivots_directions, pivots_thresholds
@lru_cache(maxsize=8)
if df.empty:
return -np.inf, -np.inf
- _, pivots_values, _, pivots_scaled_natrs = zigzag(
+ _, pivots_values, _, pivots_thresholds = zigzag(
df,
natr_period=label_period_candles,
natr_ratio=label_natr_ratio,
)
- return np.median(pivots_scaled_natrs), len(pivots_values)
+ return np.median(pivots_thresholds), len(pivots_values)
def smoothed_max(series: pd.Series, temperature=1.0) -> float:
pivots_indices: list[int] = []
pivots_values: list[float] = []
pivots_directions: list[TrendDirection] = []
- pivots_scaled_natrs: list[float] = []
+ pivots_thresholds: list[float] = []
last_pivot_pos: int = -1
candidate_pivot_pos: int = -1
pivots_indices.append(indices[pos])
pivots_values.append(value)
pivots_directions.append(direction)
- pivots_scaled_natrs.append(thresholds[pos])
+ pivots_thresholds.append(thresholds[pos])
last_pivot_pos = pos
reset_candidate_pivot()
)
state = TrendDirection.UP
- return pivots_indices, pivots_values, pivots_directions, pivots_scaled_natrs
+ return pivots_indices, pivots_values, pivots_directions, pivots_thresholds