def min_max_pred(
pred_df: pd.DataFrame, fit_live_predictions_candles: int, label_period_candles: int
) -> tuple[float, float]:
+ label_period_frequency: int = int(
+ fit_live_predictions_candles / label_period_candles
+ )
+ extrema = pred_df.tail(label_period_candles * label_period_frequency)["&s-extrema"]
beta = 10.0
- extrema = pred_df.tail(label_period_candles)["&s-extrema"]
min_pred = smooth_min(extrema, beta=beta)
max_pred = smooth_max(extrema, beta=beta)
def min_max_pred(
pred_df: pd.DataFrame, fit_live_predictions_candles: int, label_period_candles: int
) -> tuple[float, float]:
+ label_period_frequency: int = int(
+ fit_live_predictions_candles / label_period_candles
+ )
+ extrema = pred_df.tail(label_period_candles * label_period_frequency)["&s-extrema"]
beta = 10.0
- extrema = pred_df.tail(label_period_candles)["&s-extrema"]
min_pred = smooth_min(extrema, beta=beta)
max_pred = smooth_max(extrema, beta=beta)