return {**self.model_training_parameters, **best_trial_params}
def save_best_trial_params(
- self, best_trial_params: Dict, pair: Optional[str] = None
+ self, best_trial_params: Dict[str, Any], pair: Optional[str] = None
) -> None:
"""
Save the best trial hyperparameters found during hyperparameter optimization
)
raise
- def load_best_trial_params(self, pair: Optional[str] = None) -> Optional[Dict]:
+ def load_best_trial_params(
+ self, pair: Optional[str] = None
+ ) -> Optional[Dict[str, Any]]:
"""
Load the best trial hyperparameters found and saved during hyperparameter optimization
"""
return self.is_short_allowed()
@cached_property
- def plot_config(self) -> dict:
+ def plot_config(self) -> dict[str, Any]:
return {
"main_plot": {},
"subplots": {
smoothing_methods["gaussian"],
)
- def optuna_load_best_params(self, pair: str, namespace: str) -> Optional[dict]:
+ def optuna_load_best_params(
+ self, pair: str, namespace: str
+ ) -> Optional[dict[str, Any]]:
best_params_path = Path(
self.models_full_path
/ f"optuna-{namespace}-best-params-{pair.split('/')[0]}.json"