\hrulefill
\newline
-ALGORITHME PQS AVEC CONSTRAINTES D'ÉGALITÉ ET D'INEGALITÉ.
+ALGORITHME PQS AVEC CONSTRAINTES D'ÉGALITÉ ET D'INÉGALITÉ.
\newline
\textit{Entrées}: $ J : \mathbb{R}^n \longrightarrow \mathbb{R} $, $g: \mathbb{R}^n \longrightarrow \mathbb{R}^p$, $ h : \mathbb{R}^n \longrightarrow \mathbb{R}^q $ différentiables, $ x_0 \in \mathbb{R}^n $ point initial arbitraire, $ \lambda_0 \in \mathbb{R}_+^p $ et $ \mu_0 \in \mathbb{R}_+^q $ multiplicateurs initiaux, $ \varepsilon > 0 $ précision demandée.
\newline
\mathcal{PQ}_k \left \{
\begin{array}{l}
\displaystyle\min_{d \in \mathbb{R}^n} \nabla J(x_k)^\top d + \frac{1}{2}d^\top H_k d \\
- g_j(x_k) + \nabla g_j(x_k)^\top d \leq 0 \\, \ \forall j \in \{1,\ldots,p\} \\
+ g_j(x_k) + \nabla g_j(x_k)^\top d \leq 0, \ \forall j \in \{1,\ldots,p\} \\
h_i(x_k) + \nabla h_i(x_k)^\top d = 0, \ \forall i \in \{1,\ldots,q\}
\end{array}
\right .
\end{array}
\right .
$$
-où $$ (r,r_1,r_2) \in \mathbb{R}_+^3. $$
+où $$ (r,r_1,r_2) \in \mathbb{R}_+^{*^3} \land r < r_1 \land r < r_2. $$
\textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = 0.01 $ la précision, $ (x_0,y_0,z_0) = $ point initial et $ (\lambda_{0_1},\lambda_{0_2}) = $ multiplicateur initial.
\newline
Le Lagrangien $ L $ de $ \mathcal{P} $ : $$ L((x,y,z),(\lambda_1,\lambda_2)) = x^2 + y^2 + z^2 -r^2 + \lambda_1(x^2 + y^2 - r_1^2) + \lambda_2(x^2 + z^2 -r_2^2). $$
\end{pmatrix} = 2Id_{\mathbb{R}^3} $$
On en déduit que $ H[J](x,y,z) $ est inversible et que $ H[J](x,y,z)^{-1} = \frac{1}{2}Id_{\mathbb{R}^3} $.
-\hrulefill
-
-\subsection{Trace d'éxécution de PQS}
+\subsection{Trace d'éxécution de l'algorithme PQS}
-Utilisons le problème $ \mathcal{P} $ précédent :
-
-$$
- \mathcal{P} \left \{
- \begin{array}{l}
- \displaystyle\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2 \\
- g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0 \\
- \end{array}
- \right .
-$$
-où $$ (r,r_1,r_2) \in \mathbb{R}_+^3. $$
-\textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = 0.01 $, $ (x_0,y_0,z_0) = (80, 20 ,60)$ et $(\lambda_{0_1},\lambda_{0_2}) = (1 , 1)$, les rayons : $r= 40$ et $r1 = r2 = 10$.
+En utilisant le problème $ \mathcal{P} $ précédent :
\newline
-Le Lagrangien $ L $ de $ \mathcal{P} $ : $$ L((x,y,z),(\lambda_1,\lambda_2)) = x^2 + y^2 + z^2 -r^2 + \lambda_1(x^2 + y^2 - r_1^2) + \lambda_2(x^2 + z^2 -r_2^2). $$
+\textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = 0.01 $, $ (x_0,y_0,z_0) = (80, 20, 60)$ et $(\lambda_{0_1},\lambda_{0_2}) = (1, 1)$, les rayons : $r = 40$ et $r_1 = r_2 = 10$.
+\newline
+Calcul du Lagrangien $ L $ de $ \mathcal{P} $ en $ (x_0,y_0,z_0)$ :
+\newline
+$ L((80,20,60),(1,1)) = 80^2 + 20^2 + 60^2 -60^2 + 1 * (80^2 +20y^2 - 30^2) + \lambda_2(80^2 + 60^2 -30^2), $
\newline
-Le Lagrangien $ L $ de $ \mathcal{P} $ avec les valeurs :
- $ L((80,20,60),(1,1)) = 80^2 + 20^2 + 60^2 -60^2 + 1 * (80^2 +20y^2 - 30^2) + \lambda_2(80^2 + 60^2 -30^2). $
- $ L((80,20,60),(1,1)) = 6400 + 400 + 3600 - 3600 + (6400 + 400 - 900) + (6400 + 3600 -900). $
- $ L((80,20,60),(1,1)) = 21800. $
+$ L((80,20,60),(1,1)) = 6400 + 400 + 3600 - 3600 + (6400 + 400 - 900) + (6400 + 3600 -900), $
+\newline
+$ L((80,20,60),(1,1)) = 21800. $
- \begin{algorithm}
- \caption {PQS du problème $ \mathcal{P} $}
+\begin{algorithm}
+ \caption {Algorithme PQS pour $ \mathcal{P} $}
\begin{algorithmic}
- \REQUIRE $g(x,y,z)\leq 0$, $(x_0,y_0,z_0) = (80, 20 ,60)$
- \ENSURE $\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2$ and \newline $g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0 $
- \STATE \textbf{Data :}
- \STATE $k \leftarrow 0$
- \STATE $x_k \leftarrow 80$
- \STATE $y_k \leftarrow 20$
- \STATE $z_k \leftarrow 60$
- \STATE $x_a \leftarrow 30$
- \STATE $y_a \leftarrow 10$
- \STATE $z_a \leftarrow 40$
- \STATE $r \leftarrow 40$
- \STATE $r_1 \leftarrow 10$
- \STATE $r_2 \leftarrow 10$
- \STATE $\varepsilon \leftarrow 0.01$
- \STATE $\lambda_1 = \lambda_2 = 1$
- \STATE $ H[J](x,y,z)^{-1}\leftarrow \begin{pmatrix}
- 0.5 & 0 & 0 \\
- 0 & 0.5 & 0 \\
- 0 & 0 & 0.5 \\ \end{pmatrix} $
-\newline
-
- \STATE{//Calcule du gradient de $ J $ :}
- \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$ \hfill $ // résultat : (160,40,120) $
-\newline
- \STATE {//calcule des deux sous partie de du gradient de $ g $: }
- \STATE $ // \nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$
- \STATE $ \nabla g_1(x_a,y_a,z_a) = ((2x_a,2y_a,0)$ \hfill $ //résultat : (60, 20, 0)$
- \STATE $ \nabla g_2(x_a,y_a,z_a) = (2x_a,0,2z_a))$ \hfill $ //résultat : (60, 0, 80)$
-\newline
- \WHILE{$ (\norme{\nabla L(x_k,\lambda_k,\mu_k)} > \varepsilon $ or k $ < 10)$}
-
- \STATE { //première itération :}
-
-\STATE {//Calcule du gradient de $ L $ : }
-\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (280, 60, 200)$
- \STATE $ \nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = (x_L , y_L, z_L) $
-\newline
- \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
- \STATE $ d_k = -H[J](x,y,z)^{-1}*\nabla J(x,y,z)$ \hfill $ //résultat : (-(80,20,60))$
- \newline
- \STATE {//Calcul nouvelles valeurs des coordonnées}
- \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0,0,0)$
- \newline
- \STATE {//Incrémentation de k}
- \STATE $ k \leftarrow k+1$
+ \REQUIRE $\varepsilon = 0.01$, $g(x,y,z)\leq 0$, $(x_0,y_0,z_0) = (80, 20 ,60)$, $(\lambda_{0_1},\lambda_{0_2}) = (1, 1)$, $r = 40$ et $r_1 = r_2 = 10$.
+ \ENSURE $\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2$ and \newline
+ $g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0 $
+
+ \STATE \textbf{Data :}
+ \STATE $k \leftarrow 0$
+ \STATE $(x_k,y_k,z_k) \leftarrow (80,20,60)$
+ \STATE $ H[J](x,y,z)^{-1} \leftarrow
+ \begin{pmatrix}
+ 0.5 & 0 & 0 \\
+ 0 & 0.5 & 0 \\
+ 0 & 0 & 0.5 \\
+ \end{pmatrix} $
+
+ \WHILE{($\norme{\nabla L(x_k,\lambda_k,\mu_k)} > \varepsilon$ or $k < 10$)}
+
+ \STATE {//Première itération :}
+
+ \STATE{//Calcul du gradient de $ J $ :}
+ \STATE $\nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (160,40,120) $
+
+ \STATE {//Calcul des deux composantes du gradient de $ g $ :}
+ \STATE $\nabla g_1(x_k,y_k,z_k) = ((2x_k,2y_k,0)$ \hfill $ //résultat : (60, 20, 0)$
+ \STATE $\nabla g_2(x_k,y_k,z_k) = (2x_k,0,2z_k))$ \hfill $ //résultat : (60, 0, 80)$
+ \STATE $\nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$
+
+ \STATE {//Calcul du gradient de $ L $ :}
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k) $ \hfill $ //résultat : (280, 60, 200)$
+
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x,y,z)^{-1}*\nabla J(x,y,z)$ \hfill $ //résultat : (-(80,20,60))$
+
+ \STATE {//Calcul des nouvelles valeurs des coordonnées :}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + d_k $ \hfill $ //résultat : (0,0,0)$
+
+ \STATE {//Deuxième itération :}
+
+ \STATE {//Incrémentation de k}
+ \STATE $ k \leftarrow k+1$ \hfill $ //résultat : 1$
+
+ \STATE{//Calcul du gradient de $ J $ :}
+ \STATE $\nabla J(x,y,z) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (0,0,0) $
+ \STATE {//Calcul des deux composantes du gradient de $ g $ :}
+ \STATE $\nabla g_1(x_k,y_k,z_k) = ((2x_k,2y_k,0)$ \hfill $ //résultat : (60, 20, 0)$
+ \STATE $\nabla g_2(x_k,y_k,z_k) = (2x_k,0,2z_k))$ \hfill $ //résultat : (60, 0, 80)$
+ \STATE $\nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$
- \STATE {//Deuxième itération :}
- \STATE{//Calcule du gradient de $ J $ :}
- \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$ \hfill $ // résultat : (0,0,0) $
+ \STATE {//Calcul du gradient de $ L $ :}
+ \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (160, 20, 30)$
-\STATE {//Calcule du gradient de $ L $ : }
-\STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (160, 20, 30)$
- \STATE $ (\varepsilon ,\varepsilon ,\varepsilon ) = \nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) $
+ \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :}
+ \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x,y,z)$ \hfill $ //résultat : (-(0,0,0))$
- \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : }
- \STATE $ d_k = -H[J](x,y,z)^{-1}*\nabla J(x,y,z)$ \hfill $ //résultat : (-(0,0,0))$
- \STATE {//Calcul nouvelles valeurs des coordonnées}
- \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0,0,0)$
- \STATE {//Incrémentation de k}
-\STATE $ k \leftarrow k+1$\hfill $ //k = 1$
+ \STATE {//Calcul des nouvelles valeurs des coordonnées :}
+ \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + d_k $ \hfill $ //résultat : (0,0,0)$
- \ENDWHILE
+ \ENDWHILE
-\end{algorithmic}
+ \end{algorithmic}
\end{algorithm}