params = {
**self.model_training_parameters,
**{
- # "learning_rate": hp.get("learning_rate"),
+ "learning_rate": hp.get("learning_rate"),
# "gamma": hp.get("gamma"),
# "reg_alpha": hp.get("reg_alpha"),
# "reg_lambda": hp.get("reg_lambda"),
study_params = {
"objective": "reg:squarederror",
"eval_metric": "rmse",
- # "learning_rate": trial.suggest_loguniform("learning_rate", 1e-8, 1.0),
+ "learning_rate": trial.suggest_loguniform("learning_rate", 1e-8, 1.0),
# "gamma": trial.suggest_loguniform("gamma", 1e-8, 1.0),
# "reg_alpha": trial.suggest_loguniform("reg_alpha", 1e-8, 1.0),
# "reg_lambda": trial.suggest_loguniform("reg_lambda", 1e-8, 1.0),