dk.data["extra_returns_per_train"][MAXIMA_THRESHOLD_COLUMN] = max_pred
dk.data["labels_mean"], dk.data["labels_std"] = {}, {}
- for label in dk.label_list + dk.unique_class_list:
+ for label in dk.label_list:
if pred_df_full[label].dtype == object:
continue
- if not warmed_up:
- f = [0, 0]
- else:
- f = spy.stats.norm.fit(pred_df_full[label])
- dk.data["labels_mean"][label] = f[0]
- dk.data["labels_std"][label] = f[1]
+ # if not warmed_up:
+ f = [0, 0]
+ # else:
+ # f = spy.stats.norm.fit(pred_df_full[label])
+ dk.data["labels_mean"][label], dk.data["labels_std"][label] = f[0], f[1]
# fit the DI_threshold
if not warmed_up:
dk.data["extra_returns_per_train"][MAXIMA_THRESHOLD_COLUMN] = max_pred
dk.data["labels_mean"], dk.data["labels_std"] = {}, {}
- for label in dk.label_list + dk.unique_class_list:
+ for label in dk.label_list:
if pred_df_full[label].dtype == object:
continue
- if not warmed_up:
- f = [0, 0]
- else:
- f = spy.stats.norm.fit(pred_df_full[label])
- dk.data["labels_mean"][label] = f[0]
- dk.data["labels_std"][label] = f[1]
+ # if not warmed_up:
+ f = [0, 0]
+ # else:
+ # f = spy.stats.norm.fit(pred_df_full[label])
+ dk.data["labels_mean"][label], dk.data["labels_std"][label] = f[0], f[1]
# fit the DI_threshold
if not warmed_up: