y_test = y_test[:min_length]
y_pred = y_pred[:min_length]
# trim last chunk if needed
- min_last_chunk_length = min(len(y_test[-1]), len(y_pred[-1]))
- y_test[-1] = y_test[-1][:min_last_chunk_length]
- y_pred[-1] = y_pred[-1][:min_last_chunk_length]
+ last_chunk_min_length = min(len(y_test[-1]), len(y_pred[-1]))
+ y_test[-1] = y_test[-1][:last_chunk_min_length]
+ y_pred[-1] = y_pred[-1][:last_chunk_min_length]
error = sklearn.metrics.root_mean_squared_error(y_test, y_pred)
y_test = y_test[:min_length]
y_pred = y_pred[:min_length]
# trim last chunk if needed
- min_last_chunk_length = min(len(y_test[-1]), len(y_pred[-1]))
- y_test[-1] = y_test[-1][:min_last_chunk_length]
- y_pred[-1] = y_pred[-1][:min_last_chunk_length]
+ last_chunk_min_length = min(len(y_test[-1]), len(y_pred[-1]))
+ y_test[-1] = y_test[-1][:last_chunk_min_length]
+ y_pred[-1] = y_pred[-1][:last_chunk_min_length]
error = sklearn.metrics.root_mean_squared_error(y_test, y_pred)