"backtest_period_days": 2,
"write_metrics_to_disk": false,
"identifier": "ReforceXY-PPO",
- "fit_live_predictions_candles": 300,
+ "fit_live_predictions_candles": 600,
"data_kitchen_thread_count": 6, // set to number of CPU threads / 4
"track_performance": false,
"feature_parameters": {
"fit_live_predictions_candles": 300,
"data_kitchen_thread_count": 6, // set to number of CPU threads / 4
"track_performance": false,
- "predictions_smoothing": "log-sum-exp",
+ "predictions_smoothing": "mean",
"outlier_threshold": 0.999,
"optuna_hyperopt": {
"enabled": true,
fit_live_predictions_candles: int,
label_period_candles: int,
) -> tuple[float, float]:
- predictions_smoothing = self.freqai_info.get(
- "predictions_smoothing", "log-sum-exp"
- )
+ predictions_smoothing = self.freqai_info.get("predictions_smoothing", "mean")
if predictions_smoothing == "log-sum-exp":
return log_sum_exp_min_max_pred(
pred_df, fit_live_predictions_candles, label_period_candles
fit_live_predictions_candles: int,
label_period_candles: int,
) -> tuple[float, float]:
- predictions_smoothing = self.freqai_info.get(
- "predictions_smoothing", "log-sum-exp"
- )
+ predictions_smoothing = self.freqai_info.get("predictions_smoothing", "mean")
if predictions_smoothing == "log-sum-exp":
return log_sum_exp_min_max_pred(
pred_df, fit_live_predictions_candles, label_period_candles
https://github.com/sponsors/robcaulk
"""
- position_adjustment_enable = False
-
stoploss = -0.02
# Trailing stop:
trailing_stop = True
"stoploss_on_exchange_interval": 120,
}
- # Example specific variables
+ position_adjustment_enable = False
max_entry_position_adjustment = 1
- # This number is explained a bit further down
max_dca_multiplier = 2
minimal_roi = {"0": 0.03, "1000": -1}