Signed-off-by: Jérôme Benoit <jerome.benoit@piment-noir.org>
"min_child_samples": (10, 100),
}
+ log_scaled_params = {
+ "learning_rate",
+ "min_child_weight",
+ "reg_alpha",
+ "reg_lambda",
+ "gamma",
+ "min_split_gain",
+ }
+
ranges = copy.deepcopy(default_ranges)
if model_training_best_parameters:
for param, (default_min, default_max) in default_ranges.items():
):
continue
- if param in [
- "learning_rate",
- "min_child_weight",
- "reg_alpha",
- "reg_lambda",
- "gamma",
- "min_split_gain",
- ]:
+ if param in log_scaled_params:
new_min = center_value / (1 + expansion_factor)
new_max = center_value * (1 + expansion_factor)
else: