test_weights,
self.get_optuna_params(dk.pair, "hp"),
model_training_parameters,
+ self._optuna_config.get("expansion_factor"),
),
direction=optuna.study.StudyDirection.MINIMIZE,
)
trial: optuna.trial.Trial,
regressor: str,
model_training_best_parameters: dict[str, Any],
+ expansion_factor: float,
) -> dict[str, Any]:
if regressor not in regressors:
raise ValueError(
}
ranges = copy.deepcopy(default_ranges)
- expansion_factor = self._optuna_config.get("expansion_factor")
if model_training_best_parameters:
for param, (default_min, default_max) in default_ranges.items():
center_value = model_training_best_parameters.get(param)
test_weights: np.ndarray,
model_training_best_parameters: dict[str, Any],
model_training_parameters: dict[str, Any],
+ expansion_factor: float,
) -> float:
study_model_parameters = get_optuna_study_model_parameters(
- trial, regressor, model_training_best_parameters
+ trial, regressor, model_training_best_parameters, expansion_factor
)
model_training_parameters = {**model_training_parameters, **study_model_parameters}