From: Jérôme Benoit Date: Tue, 4 Mar 2025 21:55:49 +0000 (+0100) Subject: refactor(qav3): code reformatting X-Git-Url: https://git.piment-noir.org/?a=commitdiff_plain;h=64eb1aceb6191b3666a9c828e47699b3b01a0686;p=freqai-strategies.git refactor(qav3): code reformatting Signed-off-by: Jérôme Benoit --- diff --git a/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py b/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py index c095527..eeef89f 100644 --- a/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py +++ b/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py @@ -70,9 +70,9 @@ class LightGBMRegressorQuickAdapterV35(BaseRegressionModel): ) self.freqai_info["feature_parameters"][pair] = {} self.freqai_info["feature_parameters"][pair]["label_period_candles"] = ( - self.__optuna_period_params[ - pair - ].get("label_period_candles", self.ft_params["label_period_candles"]) + self.__optuna_period_params[pair].get( + "label_period_candles", self.ft_params["label_period_candles"] + ) ) def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any: @@ -230,9 +230,9 @@ class LightGBMRegressorQuickAdapterV35(BaseRegressionModel): dk.data["extra_returns_per_train"]["DI_cutoff"] = cutoff dk.data["extra_returns_per_train"]["label_period_candles"] = ( - self.__optuna_period_params.get( - pair, {} - ).get("label_period_candles", self.ft_params["label_period_candles"]) + self.__optuna_period_params.get(pair, {}).get( + "label_period_candles", self.ft_params["label_period_candles"] + ) ) dk.data["extra_returns_per_train"]["hp_rmse"] = self.__optuna_hp_rmse.get( pair, -1 diff --git a/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py b/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py index 076b40e..3936076 100644 --- a/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py +++ b/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py @@ -70,9 +70,9 @@ class XGBoostRegressorQuickAdapterV35(BaseRegressionModel): ) self.freqai_info["feature_parameters"][pair] = {} self.freqai_info["feature_parameters"][pair]["label_period_candles"] = ( - self.__optuna_period_params[ - pair - ].get("label_period_candles", self.ft_params["label_period_candles"]) + self.__optuna_period_params[pair].get( + "label_period_candles", self.ft_params["label_period_candles"] + ) ) def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any: @@ -231,9 +231,9 @@ class XGBoostRegressorQuickAdapterV35(BaseRegressionModel): dk.data["extra_returns_per_train"]["DI_cutoff"] = cutoff dk.data["extra_returns_per_train"]["label_period_candles"] = ( - self.__optuna_period_params.get( - pair, {} - ).get("label_period_candles", self.ft_params["label_period_candles"]) + self.__optuna_period_params.get(pair, {}).get( + "label_period_candles", self.ft_params["label_period_candles"] + ) ) dk.data["extra_returns_per_train"]["hp_rmse"] = self.__optuna_hp_rmse.get( pair, -1