From: Jérôme Benoit Date: Sun, 25 Nov 2018 18:45:17 +0000 (+0100) Subject: Merge branch 'master' of git.piment-noir.org:Projet_Recherche_Operationnelle X-Git-Url: https://git.piment-noir.org/?a=commitdiff_plain;h=781ed37030cda81d217eeec17dead7d658427e4e;p=Projet_Recherche_Operationnelle.git Merge branch 'master' of git.piment-noir.org:Projet_Recherche_Operationnelle Signed-off-by: Jérôme Benoit --- 781ed37030cda81d217eeec17dead7d658427e4e diff --cc rapport/ProjetOptimRO.tex index adf023a,531dd9d..ac17118 --- a/rapport/ProjetOptimRO.tex +++ b/rapport/ProjetOptimRO.tex @@@ -816,84 -810,248 +816,247 @@@ La matrice hessienne de $ J $ : $$ H[J] \end{pmatrix} = 2Id_{\mathbb{R}^3} $$ On en déduit que $ H[J](x,y,z) $ est inversible et que $ H[J](x,y,z)^{-1} = \frac{1}{2}Id_{\mathbb{R}^3} $. - \subsection{Trace d'éxécution de l'algorithme PQS} -\hrulefill + \newpage - En utilisant le problème $ \mathcal{P} $ précédent : - \newline - \textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = 0.01 $, $ (x_0,y_0,z_0) = (80, 20, 60)$ et $(\lambda_{0_1},\lambda_{0_2}) = (1, 1)$, les rayons : $r = 40$ et $r_1 = r_2 = 10$. - \newline - Calcul du Lagrangien $ L $ de $ \mathcal{P} $ en $ (x_0,y_0,z_0)$ : - \newline - $ L((80,20,60),(1,1)) = 80^2 + 20^2 + 60^2 -60^2 + 1 * (80^2 +20y^2 - 30^2) + \lambda_2(80^2 + 60^2 -30^2), $ - \newline - $ L((80,20,60),(1,1)) = 6400 + 400 + 3600 - 3600 + (6400 + 400 - 900) + (6400 + 3600 -900), $ - \newline - $ L((80,20,60),(1,1)) = 21800. $ + \subsection{Trace d'éxécution de PQS avec contrainte} + %\includegraphics[scale=0.2]{figure_sphere_avec_contrainte.png}\\ + \begin{center} + \includegraphics[scale=0.2]{sphere2.jpg}\\ - \begin{algorithm} - \caption {Algorithme PQS pour $ \mathcal{P} $} - \begin{algorithmic} - \REQUIRE $\varepsilon = 0.01$, $g(x,y,z)\leq 0$, $(x_0,y_0,z_0) = (80, 20 ,60)$, $(\lambda_{0_1},\lambda_{0_2}) = (1, 1)$, $r = 40$ et $r_1 = r_2 = 10$. - \ENSURE $\displaystyle\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2$ and \newline - $g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0 $ + \footnotesize{ + \small \it Fig : Exemple de la sphère\\ + \vspace*{0.5cm} + } + \end{center} - \STATE \textbf{Data :} - \STATE $k \leftarrow 0$ - \STATE $(x_k,y_k,z_k) \leftarrow (80,20,60)$ - \STATE $ H[J](x,y,z)^{-1} \leftarrow - \begin{pmatrix} - 0.5 & 0 & 0 \\ - 0 & 0.5 & 0 \\ - 0 & 0 & 0.5 \\ - \end{pmatrix} $ + Utilisons le problème $ \mathcal{P} $ précédent : - \WHILE{($\norme{\nabla L(x_k,\lambda_k,\mu_k)} > \varepsilon$ or $k < 10$)} + $$ + \mathcal{P} \left \{ + \begin{array}{l} + \displaystyle\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2 \\ + g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0 \\ + \end{array} + \right . + $$ + où $$ (r,r_1,r_2) \in \mathbb{R}_+^3. $$ + \textit{Entrées} : $ J $ et $ g $ de classe $ \mathcal{C}^2 $, $ \varepsilon = 0.01 $, $ (x_0,y_0,z_0) = (100, 100 ,0)$ et $(\lambda_{0_1},\lambda_{0_2}) = (1 , 1)$, les rayons : $r= 100$ et $r1 = r2 = 10$. + \newline + Le Lagrangien $ L $ de $ \mathcal{P} $ : $$ L((x,y,z),(\lambda_1,\lambda_2)) = x^2 + y^2 + z^2 -r^2 + \lambda_1(x^2 + y^2 - r_1^2) + \lambda_2(x^2 + z^2 -r_2^2). $$ + \newline + Le Lagrangien $ L $ de $ \mathcal{P} $ avec les valeurs : + $ L((100,100,0),(1,1)) = 100^2 + 100^2 + 0^2 -100^2 + 1 * (100^2 +100^2 - 10^2) + \lambda_2(100^2 + 100^2 -10^2). $ + $ L((100,100,0),(1,1)) = 1000 + 1000 - 1000 + (1000 + 1000 - 100) + (1000 + 1000 -100). $ + $ L((100,100,0),(1,1)) = 4800. $ - \STATE {//Première itération :} + \newpage + \begin{algorithmfloat}[#Algo 1] + \caption {Trace d'éxécution du PQS du problème $ \mathcal{P} $} + \begin{algorithmic} + \REQUIRE $g(x_0,y_0,z_0)\leq 0$, $(x_0,y_0,z_0) = (10, 10 ,10)$ + \ENSURE $\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2$ and \newline $g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0 $ + \STATE \textbf{Data :} + \STATE $k \leftarrow 0, (x_k, y_k, z_k) \leftarrow (100, 100, 0), r \leftarrow 100$ + \STATE $r_1 = r2 \leftarrow 10, \varepsilon \leftarrow 0.01$ + \STATE $\lambda_1 = \lambda_2 = 1$ + \STATE $ H[J](x,y,z)^{-1}\leftarrow \begin{pmatrix} + 0.5 & 0 & 0 \\ + 0 & 0.5 & 0 \\ + 0 & 0 & 0.5 \\ \end{pmatrix} $ + \newline - \STATE{//Calcul du gradient de $ J $ :} - \STATE $\nabla J(x_k,y_k,z_k) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (160,40,120)$ + \STATE{//Calcule du gradient de $ J $ :} + \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$ \hfill $ // résultat : (100,100,0) $ + \newline + \STATE {//calcule des deux sous partie de du gradient de $ g $: } + \STATE $ \nabla g_1(x_a,y_a,z_a) = ((2x_a,2y_a,0)$ \hfill $ //résultat : (20, 20, 0)$ + \STATE $ \nabla g_2(x_a,y_a,z_a) = (2x_a,0,2z_a))$ \hfill $ //résultat : (20, 0, 20)$ + \STATE $ \nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$ + \newline + \WHILE{$ (\norme{\nabla L(x_k,\lambda_k,\mu_k)} > \varepsilon $ or k $ \leq 10)$} - \STATE {//Calcul des deux composantes du gradient de $ g $ :} - \STATE $\nabla g_1(x_k,y_k,z_k) = ((2x_k,2y_k,0)$ \hfill $ //résultat : (60, 20, 0)$ - \STATE $\nabla g_2(x_k,y_k,z_k) = (2x_k,0,2z_k))$ \hfill $ //résultat : (60, 0, 80)$ - \STATE $\nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$ + \STATE { //première itération :} - \STATE {//Calcul du gradient de $ L $ :} - \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k) $ \hfill $ //résultat : (280, 60, 200)$ + \STATE {//Calcule du gradient de $ L $ : } + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (220, 220, 40)$ + \STATE $ \nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = (x_L , y_L, z_L) $ + \newline + \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : } + \STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(50,50,0))$ + \newline + \STATE {//Calcul nouvelles valeurs des coordonnées} + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (50,50,0)$ + \newline + \STATE {//Incrémentation de k} + \STATE $ k \leftarrow k+1$\hfill $ //k = 1$ + \newline - \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :} - \STATE $ d_k = -H[J](x,y,z)^{-1}*\nabla J(x,y,z)$ \hfill $ //résultat : (-(80,20,60))$ + \STATE {//Deuxième itération :} + \STATE{//Calcule du gradient de $ J $ :} + \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$ \hfill $ // résultat : (100,100,0) $ + \newline + \STATE {//Calcule du gradient de $ L $ : } + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (120, 120, 0)$ + \STATE $ \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + \newline + \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : } + \STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(25,25,0))$ + \STATE {//Calcul nouvelles valeurs des coordonnées} + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (25,25,0)$ + \newline + \STATE {//Incrémentation de k} + \STATE $ k \leftarrow k+1$\hfill $ //k = 2$ + \newline - \STATE {//Calcul des nouvelles valeurs des coordonnées :} - \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + d_k $ \hfill $ //résultat : (0,0,0)$ + \STATE {//Troisième itération :} + \STATE{//Calcule du gradient de $ J $ :} + \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$ \hfill $ // résultat : (50,50,0) $ + \newline + \STATE {//Calcule du gradient de $ L $ : } + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (70, 70, 0)$ + \STATE $ \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + \newline + \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : } + \STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(12.5,12.5,0))$ + \STATE {//Calcul nouvelles valeurs des coordonnées} + \newline + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (12.5,12.5,0)$ + \STATE {//Incrémentation de k} + \STATE $ k \leftarrow k+1$\hfill $ //k = 3$ + \newline - \STATE {//Deuxième itération :} + \STATE {//Quatrième itération :} + \STATE{//Calcule du gradient de $ J $ :} + \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$ \hfill $ // résultat : (25,25,0) $ + \newline + \STATE {//Calcule du gradient de $ L $ : } + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (45, 45, 0)$ + \STATE $ \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + \newline + \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : } + \STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(6.25,6.25,0))$ + \newline + \STATE {//Calcul nouvelles valeurs des coordonnées} + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (6.25,6.25,0)$ + \STATE {//Incrémentation de k} + \newline + \STATE $ k \leftarrow k+1$\hfill $ //k = 4$ + \STATE $ $ - \STATE {//Incrémentation de k} - \STATE $ k \leftarrow k+1$ \hfill $ //résultat : 1$ + \STATE {//Cinquième itération :} + \STATE{//Calcule du gradient de $ J $ :} + \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$ \hfill $ // résultat : (12.5,12.5,0) $ + \newline + \STATE {//Calcule du gradient de $ L $ : } + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (32.5, 32.5, 0)$ + \STATE $ \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + \newline + \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : } + \STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(3.125,3.125,0))$ + \newline + \STATE {//Calcul nouvelles valeurs des coordonnées} + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (3.125,3.125,0)$ + \newline + \STATE {//Incrémentation de k} + \STATE $ k \leftarrow k+1$\hfill $ //k = 5$ + \newline - \STATE{//Calcul du gradient de $ J $ :} - \STATE $\nabla J(x,y,z) = (2x_k,2y_k,2z_k)$ \hfill $ //résultat : (0,0,0)$ + \STATE {//Sixième itération :} + \STATE{//Calcule du gradient de $ J $ :} + \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$ \hfill $ // résultat : (6.25,6.25,0) $ + \newline + \STATE {//Calcule du gradient de $ L $ : } + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (26.25, 26.25, 0)$ + \STATE $ \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + \newline + \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : } + \STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(1.5625,1.5625,0))$ + \STATE {//Calcul nouvelles valeurs des coordonnées} + \newline + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (1.5625,1.5625,0)$ + \STATE {//Incrémentation de k} + \newline + \STATE $ k \leftarrow k+1$\hfill $ //k = 6$ + \newline - \STATE {//Calcul des deux composantes du gradient de $ g $ :} - \STATE $\nabla g_1(x_k,y_k,z_k) = ((2x_k,2y_k,0)$ \hfill $ //résultat : (60, 20, 0)$ - \STATE $\nabla g_2(x_k,y_k,z_k) = (2x_k,0,2z_k))$ \hfill $ //résultat : (60, 0, 80)$ - \STATE $\nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$ + \STATE {//Septième itération :} + \STATE{//Calcule du gradient de $ J $ :} + \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$ \hfill $ // résultat : (3.125, 3.125, 0) $ + \newline + \STATE {//Calcule du gradient de $ L $ : } + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (23.125, 23.125, 0)$ + \STATE $ \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + \newline + \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : } + \STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(0.78125,0.78125,0))$ + \STATE {//Calcul nouvelles valeurs des coordonnées} + \newline + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0.78125,0.78125,0)$ + \STATE {//Incrémentation de k} + \newline + \STATE $ k \leftarrow k+1$\hfill $ //k = 7$ + \newline - \STATE {//Calcul du gradient de $ L $ :} - \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_k,y_k,z_k) + \lambda_2 \nabla g_2(x_k,y_k,z_k)) $ \hfill $ //résultat : (160, 20, 30)$ + \STATE {//Huitième itération :} + \STATE{//Calcule du gradient de $ J $ :} + \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$ \hfill $ // résultat : (1.5625, 1.5625, 0) $ + \newline + \STATE {//Calcule du gradient de $ L $ : } + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (21.5625, 21.5625, 0)$ + \STATE $ \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + \newline + \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : } + \STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(0.390625,0.390625,0))$ + \newline + \STATE {//Calcul nouvelles valeurs des coordonnées} + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0.390625,0.390625,0)$ + \newline + \STATE {//Incrémentation de k} + \STATE $ k \leftarrow k+1$\hfill $ //k = 8$ + \newline - \STATE {//Calcul de la direction de la pente $ d_k $ (méthode de Newton) :} - \STATE $ d_k = -H[J](x_k,y_k,z_k)^{-1} * \nabla J(x,y,z)$ \hfill $ //résultat : (-(0,0,0))$ + \STATE {//neuvième itération :} + \STATE{//Calcule du gradient de $ J $ :} + \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$ \hfill $ // résultat : (0.78125, 0.78125, 0) $ + \newline + \STATE {//Calcule du gradient de $ L $ : } + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (20.78125, 20.78125, 0)$ + \STATE $ \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + \newline + \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : } + \STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(0.1953125,0.1953125,0))$ + \newline + \STATE {//Calcul nouvelles valeurs des coordonnées} + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0.1953125,0.1953125,0)$ + \newline + \STATE {//Incrémentation de k} + \STATE $ k \leftarrow k+1 \hfill //k = 9$ + \newline - \STATE {//Calcul des nouvelles valeurs des coordonnées :} - \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k) + d_k $ \hfill $ //résultat : (0,0,0)$ + \STATE {//Dixième itération :} + \STATE{//Calcule du gradient de $ J $ :} + \STATE $ \nabla J(x,y,z) = (2x_k,2y_k,2z_k)$ \hfill $ // résultat : (0.390625, 0.390625, 0) $ + \newline + \STATE {//Calcule du gradient de $ L $ : } + \STATE $\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2)) = \nabla J(x_k,y_k,z_k) + \lambda_1 \nabla g_1(x_a,y_a,z_a) + \lambda_2 \nabla g_2(x_a,y_a,z_a)) $ \hfill $// résultat : (20.390625, 20.390625, 0)$ + \STATE $ \varepsilon _1 = \norme{\nabla L((x_k,y_k,z_k),(\lambda_1,\lambda_2))}$ + \newline + \STATE {//Calcule de la direction de la pente dk (méthode de Newton) : } + \STATE $ d_k = -H[J](x,y,z)^{-1}* J(x,y,z)$ \hfill $ //résultat : (-(0.097665625,0.097665625,0))$ + \newline + \STATE {//Calcul nouvelles valeurs des coordonnées} + \STATE $ (x_{k+1},y_{k+1},z_{k+1}) = (x_k,y_k,z_k)+ d_k $ \hfill $ //résultat : (0.097665625,0.097665625,0)$ + \newline + \STATE {//Incrémentation de k} + \STATE $ k \leftarrow k+1$\hfill $ //k = 10$ + \newline + \STATE {// Fin de la boucle "while" car nous avons atteint k =10, condition mettant fin à la //boucle} + \newline - \ENDWHILE + \ENDWHILE - \end{algorithmic} - \end{algorithm} + \end{algorithmic} + \end{algorithmfloat} \hrulefill