From: Jérôme Benoit Date: Thu, 6 Feb 2025 19:30:38 +0000 (+0100) Subject: refactor(qav3): improve log messages X-Git-Url: https://git.piment-noir.org/?a=commitdiff_plain;h=addb6292d4d0f248945b971e6a78431a4e8f1f40;p=freqai-strategies.git refactor(qav3): improve log messages Signed-off-by: Jérôme Benoit --- diff --git a/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py b/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py index befe599..1f3ec75 100644 --- a/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py +++ b/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py @@ -90,9 +90,9 @@ class LightGBMRegressorQuickAdapterV35(BaseRegressionModel): self.__optuna_hp = study.best_params # log params for key, value in self.__optuna_hp.items(): - logger.info(f"Optuna hyperopt {key:>20s} : {value}") + logger.info(f"Optuna hyperopt | {key:>20s} : {value}") logger.info( - f"Optuna hyperopt {'best objective value':>20s} : {study.best_value}" + f"Optuna hyperopt | {'best objective value':>20s} : {study.best_value}" ) train_window = self.__optuna_hp.get("train_period_candles") @@ -138,7 +138,7 @@ class LightGBMRegressorQuickAdapterV35(BaseRegressionModel): ) if candle_diff < 0: logger.warning( - f"Fit live predictions not warmed up yet. Still {abs(candle_diff)} candles to go" + f"{pair} fit live predictions not warmed up yet. Still {abs(candle_diff)} candles to go" ) warmed_up = False diff --git a/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py b/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py index d59c289..edda07e 100644 --- a/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py +++ b/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py @@ -90,9 +90,9 @@ class XGBoostRegressorQuickAdapterV35(BaseRegressionModel): self.__optuna_hp = study.best_params # log params for key, value in self.__optuna_hp.items(): - logger.info(f"Optuna hyperopt {key:>20s} : {value}") + logger.info(f"Optuna hyperopt | {key:>20s} : {value}") logger.info( - f"Optuna hyperopt {'best objective value':>20s} : {study.best_value}" + f"Optuna hyperopt | {'best objective value':>20s} : {study.best_value}" ) train_window = self.__optuna_hp.get("train_period_candles") @@ -138,7 +138,7 @@ class XGBoostRegressorQuickAdapterV35(BaseRegressionModel): ) if candle_diff < 0: logger.warning( - f"Fit live predictions not warmed up yet. Still {abs(candle_diff)} candles to go" + f"{pair} fit live predictions not warmed up yet. Still {abs(candle_diff)} candles to go" ) warmed_up = False