From: Jérôme Benoit Date: Sat, 25 Jan 2025 22:52:40 +0000 (+0100) Subject: feat: add n_estimators to HPO X-Git-Url: https://git.piment-noir.org/?a=commitdiff_plain;h=d79aa4c5732d73162b50583d3d2fcc152d393072;p=freqai-strategies.git feat: add n_estimators to HPO Signed-off-by: Jérôme Benoit --- diff --git a/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py b/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py index ecd61af..0a4a8fd 100644 --- a/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py +++ b/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py @@ -98,6 +98,7 @@ class LightGBMRegressorQuickAdapterV35(BaseRegressionModel): params = { **self.model_training_parameters, **{ + "n_estimators": hp.get("n_estimators"), "learning_rate": hp.get("learning_rate"), "reg_alpha": hp.get("reg_alpha"), "reg_lambda": hp.get("reg_lambda"), @@ -214,6 +215,7 @@ class LightGBMRegressorQuickAdapterV35(BaseRegressionModel): def objective(trial, X, y, weights, X_test, y_test, params): study_params = { "objective": "rmse", + "n_estimators": trial.suggest_int("n_estimators", 100, 1000), "learning_rate": trial.suggest_loguniform("learning_rate", 1e-8, 1.0), "reg_alpha": trial.suggest_loguniform("reg_alpha", 1e-8, 10.0), "reg_lambda": trial.suggest_loguniform("reg_lambda", 1e-8, 10.0), diff --git a/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py b/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py index 2c34f43..55a1e66 100644 --- a/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py +++ b/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py @@ -98,6 +98,7 @@ class XGBoostRegressorQuickAdapterV35(BaseRegressionModel): params = { **self.model_training_parameters, **{ + "n_estimators": hp.get("n_estimators"), "learning_rate": hp.get("learning_rate"), "gamma": hp.get("gamma"), "reg_alpha": hp.get("reg_alpha"), @@ -216,6 +217,7 @@ def objective(trial, X, y, weights, X_test, y_test, params): study_params = { "objective": "reg:squarederror", "eval_metric": "rmse", + "n_estimators": trial.suggest_int("n_estimators", 100, 1000), "learning_rate": trial.suggest_loguniform("learning_rate", 1e-8, 1.0), "gamma": trial.suggest_loguniform("gamma", 1e-8, 1.0), "reg_alpha": trial.suggest_loguniform("reg_alpha", 1e-8, 10.0),