From: Jérôme Benoit Date: Tue, 11 Mar 2025 10:50:11 +0000 (+0100) Subject: refactor(qav3): code formatting X-Git-Url: https://git.piment-noir.org/?a=commitdiff_plain;h=d83bdac5cf9724caccee63996e5d302cab5b788e;p=freqai-strategies.git refactor(qav3): code formatting Signed-off-by: Jérôme Benoit --- diff --git a/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py b/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py index 561f619..156bb91 100644 --- a/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py +++ b/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py @@ -145,9 +145,7 @@ class LightGBMRegressorQuickAdapterV35(BaseRegressionModel): "label_period_candles" ] = self.__optuna_period_params[dk.pair].get("label_period_candles") - model = LGBMRegressor( - objective="regression", **model_training_parameters - ) + model = LGBMRegressor(objective="regression", **model_training_parameters) eval_set, eval_weights = self.eval_set_and_weights(X_test, y_test, test_weights) @@ -575,9 +573,7 @@ def period_objective( test_weights = test_weights[-test_window:] # Fit the model - model = LGBMRegressor( - objective="regression", **model_training_parameters - ) + model = LGBMRegressor(objective="regression", **model_training_parameters) model.fit( X=X, y=y, @@ -629,9 +625,7 @@ def hp_objective( model_training_parameters = {**model_training_parameters, **study_parameters} # Fit the model - model = LGBMRegressor( - objective="regression", **model_training_parameters - ) + model = LGBMRegressor(objective="regression", **model_training_parameters) model.fit( X=X, y=y, diff --git a/quickadapter/user_data/strategies/QuickAdapterV3.py b/quickadapter/user_data/strategies/QuickAdapterV3.py index 7c8693d..28836da 100644 --- a/quickadapter/user_data/strategies/QuickAdapterV3.py +++ b/quickadapter/user_data/strategies/QuickAdapterV3.py @@ -204,9 +204,8 @@ class QuickAdapterV3(IStrategy): dataframe["vwap_upperband"], ) = VWAPB(dataframe, 20, 1) dataframe["%-vwap_width"] = ( - (dataframe["vwap_upperband"] - dataframe["vwap_lowerband"]) - / dataframe["vwap_middleband"] - ) + dataframe["vwap_upperband"] - dataframe["vwap_lowerband"] + ) / dataframe["vwap_middleband"] dataframe["%-dist_to_vwap_upperband"] = get_distance( dataframe["close"], dataframe["vwap_upperband"] )