From: Jérôme Benoit Date: Sat, 25 Jan 2025 13:05:52 +0000 (+0100) Subject: feat: add learning_rate to HPO X-Git-Url: https://git.piment-noir.org/?a=commitdiff_plain;h=ecdb4da929b05144dbde933948d71ee58aa04a05;p=freqai-strategies.git feat: add learning_rate to HPO Signed-off-by: Jérôme Benoit --- diff --git a/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py b/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py index d2e5b75..02c1d9b 100644 --- a/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py +++ b/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py @@ -98,7 +98,7 @@ class XGBoostRegressorQuickAdapterV35(BaseRegressionModel): params = { **self.model_training_parameters, **{ - # "learning_rate": hp.get("learning_rate"), + "learning_rate": hp.get("learning_rate"), # "gamma": hp.get("gamma"), # "reg_alpha": hp.get("reg_alpha"), # "reg_lambda": hp.get("reg_lambda"), @@ -216,7 +216,7 @@ def objective(trial, X, y, weights, X_test, y_test, params): study_params = { "objective": "reg:squarederror", "eval_metric": "rmse", - # "learning_rate": trial.suggest_loguniform("learning_rate", 1e-8, 1.0), + "learning_rate": trial.suggest_loguniform("learning_rate", 1e-8, 1.0), # "gamma": trial.suggest_loguniform("gamma", 1e-8, 1.0), # "reg_alpha": trial.suggest_loguniform("reg_alpha", 1e-8, 1.0), # "reg_lambda": trial.suggest_loguniform("reg_lambda", 1e-8, 1.0),