From: Jérôme Benoit Date: Mon, 24 Feb 2025 17:45:14 +0000 (+0100) Subject: fix(qav3): reset predictions normal distribution fitting X-Git-Url: https://git.piment-noir.org/?a=commitdiff_plain;h=f10af7066d728df071d74759a4b45b2056e2ab59;p=freqai-strategies.git fix(qav3): reset predictions normal distribution fitting Signed-off-by: Jérôme Benoit --- diff --git a/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py b/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py index ae470ce..37f4d79 100644 --- a/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py +++ b/quickadapter/user_data/freqaimodels/LightGBMRegressorQuickAdapterV35.py @@ -200,15 +200,14 @@ class LightGBMRegressorQuickAdapterV35(BaseRegressionModel): dk.data["extra_returns_per_train"][MAXIMA_THRESHOLD_COLUMN] = max_pred dk.data["labels_mean"], dk.data["labels_std"] = {}, {} - for label in dk.label_list + dk.unique_class_list: + for label in dk.label_list: if pred_df_full[label].dtype == object: continue - if not warmed_up: - f = [0, 0] - else: - f = spy.stats.norm.fit(pred_df_full[label]) - dk.data["labels_mean"][label] = f[0] - dk.data["labels_std"][label] = f[1] + # if not warmed_up: + f = [0, 0] + # else: + # f = spy.stats.norm.fit(pred_df_full[label]) + dk.data["labels_mean"][label], dk.data["labels_std"][label] = f[0], f[1] # fit the DI_threshold if not warmed_up: diff --git a/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py b/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py index d0fd9c4..f83e83d 100644 --- a/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py +++ b/quickadapter/user_data/freqaimodels/XGBoostRegressorQuickAdapterV35.py @@ -201,15 +201,14 @@ class XGBoostRegressorQuickAdapterV35(BaseRegressionModel): dk.data["extra_returns_per_train"][MAXIMA_THRESHOLD_COLUMN] = max_pred dk.data["labels_mean"], dk.data["labels_std"] = {}, {} - for label in dk.label_list + dk.unique_class_list: + for label in dk.label_list: if pred_df_full[label].dtype == object: continue - if not warmed_up: - f = [0, 0] - else: - f = spy.stats.norm.fit(pred_df_full[label]) - dk.data["labels_mean"][label] = f[0] - dk.data["labels_std"][label] = f[1] + # if not warmed_up: + f = [0, 0] + # else: + # f = spy.stats.norm.fit(pred_df_full[label]) + dk.data["labels_mean"][label], dk.data["labels_std"][label] = f[0], f[1] # fit the DI_threshold if not warmed_up: