From: Jérôme Benoit Date: Sun, 25 Nov 2018 21:25:06 +0000 (+0100) Subject: More and more fixlets. X-Git-Url: https://git.piment-noir.org/?a=commitdiff_plain;h=fad1b03a1b6fd54b868bca3c58b1179baa2aa16e;p=Projet_Recherche_Operationnelle.git More and more fixlets. Signed-off-by: Jérôme Benoit --- diff --git "a/pr\303\251sentation/Slides_ProjetOptimRO.tex" "b/pr\303\251sentation/Slides_ProjetOptimRO.tex" index 734cf93..91a29d5 100644 --- "a/pr\303\251sentation/Slides_ProjetOptimRO.tex" +++ "b/pr\303\251sentation/Slides_ProjetOptimRO.tex" @@ -406,7 +406,7 @@ $}} \begin{defin} Une méthode de descente est dite Newtonienne si $$ d_k = -H[J](x_k)^{-1} \nabla J(x_k). $$ - Elles conduisent aux \textit{algorithmes Newtoniens}. + Ce type de méthodes conduit aux \textit{algorithmes Newtoniens}. \end{defin} La direction de descente $ d_k = -H[J](x_k)^{-1} \nabla J(x_k) $ est l'unique solution du problème : diff --git a/rapport/ProjetOptimRO.tex b/rapport/ProjetOptimRO.tex index 3f3393f..f0024f2 100644 --- a/rapport/ProjetOptimRO.tex +++ b/rapport/ProjetOptimRO.tex @@ -844,7 +844,7 @@ $ L((100,100,0),(1,1)) = 4800. $ \begin{algorithm} \caption {Trace d'éxécution de l'algorithme PQS} \begin{algorithmic} - \REQUIRE $g(x_0,y_0,z_0)\leq 0$, $(x_0,y_0,z_0) = (10, 10 ,10)$ + \REQUIRE $(x_0,y_0,z_0) = (100, 100 ,0), g(x_0,y_0,z_0) \leq 0$ \ENSURE $\displaystyle\min_{(x,y,z) \in \mathbb{R}^3} J(x,y,z) = x^2 + y^2 + z^2 -r^2$ and \newline $g(x,y,z) = (g_1(x,y,z), g_2(x,y,z)) = (x^2 + y^2 - r_1^2, x^2 + z^2 -r_2^2) \leq 0 $ \STATE \textbf{Data :} \STATE $k \leftarrow 0, (x_k, y_k, z_k) \leftarrow (100, 100, 0), r \leftarrow 100$ @@ -857,7 +857,7 @@ $ L((100,100,0),(1,1)) = 4800. $ 0 & 0 & 0.5 \\ \end{pmatrix} $ \newline - \STATE {//Calcul des deux composantes du gradient de $ g $:} + \STATE {//Pré-calcul des deux composantes du gradient de $ g $:} \STATE $ \nabla g_1(x_k,y_k,z_k) = ((2x_k,2y_k,0)$ \hfill $ //résultat : (20, 20, 0)$ \STATE $ \nabla g_2(x_k,y_k,z_k) = (2x_k,0,2z_k))$ \hfill $ //résultat : (20, 0, 20)$ \STATE $ \nabla g(x_k,y_k,z_k) = (\nabla g_1(x_k,y_k,z_k), \nabla g_2(x_k,y_k,z_k))$