From 5b562594d929b4906729140138d267bcf83c6f1c Mon Sep 17 00:00:00 2001 From: =?utf8?q?J=C3=A9r=C3=B4me=20Benoit?= Date: Mon, 5 Jan 2026 00:15:18 +0100 Subject: [PATCH] docs(quickadapter): refine extrema weighting description MIME-Version: 1.0 Content-Type: text/plain; charset=utf8 Content-Transfer-Encoding: 8bit Signed-off-by: Jérôme Benoit --- README.md | 162 +++++++++++++++++++++++++++--------------------------- 1 file changed, 81 insertions(+), 81 deletions(-) diff --git a/README.md b/README.md index c6fb8c5..87ff43a 100644 --- a/README.md +++ b/README.md @@ -37,87 +37,87 @@ docker compose up -d --build ### Configuration tunables -| Path | Default | Type / Range | Description | -| -------------------------------------------------------------- | ----------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| _Protections_ | | | | -| custom_protections.trade_duration_candles | 72 | int >= 1 | Estimated trade duration in candles. Scales protections stop duration candles and trade limit. | -| custom_protections.lookback_period_fraction | 0.5 | float (0,1] | Fraction of `fit_live_predictions_candles` used to calculate `lookback_period_candles` for _MaxDrawdown_ and _StoplossGuard_ protections. | -| custom_protections.cooldown.enabled | true | bool | Enable/disable _CooldownPeriod_ protection. | -| custom_protections.cooldown.stop_duration_candles | 4 | int >= 1 | Number of candles to wait before allowing new trades after a trade is closed. | -| custom_protections.drawdown.enabled | true | bool | Enable/disable _MaxDrawdown_ protection. | -| custom_protections.drawdown.max_allowed_drawdown | 0.2 | float (0,1) | Maximum allowed drawdown. | -| custom_protections.stoploss.enabled | true | bool | Enable/disable _StoplossGuard_ protection. | -| _Leverage_ | | | | -| leverage | `proposed_leverage` | float [1.0, max_leverage] | Leverage. Fallback to `proposed_leverage` for the pair. | -| _Exit pricing_ | | | | -| exit_pricing.trade_price_target_method | `moving_average` | enum {`moving_average`,`quantile_interpolation`,`weighted_average`} | Trade NATR computation method. (Deprecated alias: `exit_pricing.trade_price_target`) | -| exit_pricing.thresholds_calibration.decline_quantile | 0.75 | float (0,1) | PnL decline quantile threshold. | -| _Reversal confirmation_ | | | | -| reversal_confirmation.lookback_period_candles | 0 | int >= 0 | Prior confirming candles; 0 = none. (Deprecated alias: `reversal_confirmation.lookback_period`) | -| reversal_confirmation.decay_fraction | 0.5 | float (0,1] | Geometric per-candle volatility adjusted reversal threshold relaxation factor. (Deprecated alias: `reversal_confirmation.decay_ratio`) | -| reversal_confirmation.min_natr_multiplier_fraction | 0.0095 | float [0,1] | Lower bound fraction for volatility adjusted reversal threshold. (Deprecated alias: `reversal_confirmation.min_natr_ratio_percent`) | -| reversal_confirmation.max_natr_multiplier_fraction | 0.075 | float [0,1] | Upper bound fraction (>= lower bound) for volatility adjusted reversal threshold. (Deprecated alias: `reversal_confirmation.max_natr_ratio_percent`) | -| _Regressor model_ | | | | -| freqai.regressor | `xgboost` | enum {`xgboost`,`lightgbm`,`histgradientboostingregressor`} | Machine learning regressor algorithm. | -| _Extrema smoothing_ | | | | -| freqai.extrema_smoothing.method | `gaussian` | enum {`gaussian`,`kaiser`,`triang`,`smm`,`sma`,`savgol`,`gaussian_filter1d`} | Extrema smoothing method (`smm`=median, `sma`=mean, `savgol`=Savitzky–Golay). | -| freqai.extrema_smoothing.window_candles | 5 | int >= 3 | Smoothing window length (candles). (Deprecated alias: `freqai.extrema_smoothing.window`) | -| freqai.extrema_smoothing.beta | 8.0 | float > 0 | Shape parameter for `kaiser` kernel. | -| freqai.extrema_smoothing.polyorder | 3 | int >= 1 | Polynomial order for `savgol` smoothing. | -| freqai.extrema_smoothing.mode | `mirror` | enum {`mirror`,`constant`,`nearest`,`wrap`,`interp`} | Boundary mode for `savgol` and `gaussian_filter1d`. | -| freqai.extrema_smoothing.sigma | 1.0 | float > 0 | Gaussian `sigma` for `gaussian_filter1d` smoothing. | -| _Extrema weighting_ | | | | -| freqai.extrema_weighting.strategy | `none` | enum {`none`,`amplitude`,`amplitude_threshold_ratio`,`volume_rate`,`speed`,`efficiency_ratio`,`volume_weighted_efficiency_ratio`,`combined`} | Extrema weighting source: unweighted (`none`), swing amplitude (`amplitude`), swing amplitude / median volatility-threshold ratio (`amplitude_threshold_ratio`), swing volume per candle (`volume_rate`), swing speed (`speed`), swing efficiency ratio (`efficiency_ratio`), swing volume-weighted efficiency ratio (`volume_weighted_efficiency_ratio`), or combined metrics aggregation (`combined`). | -| freqai.extrema_weighting.metric_coefficients | {} | dict[str, float] | Per-metric coefficients for `combined` strategy. Keys: `amplitude`, `amplitude_threshold_ratio`, `volume_rate`, `speed`, `efficiency_ratio`, `volume_weighted_efficiency_ratio`. | -| freqai.extrema_weighting.aggregation | `weighted_average` | enum {`weighted_average`,`geometric_mean`} | Metric aggregation method for `combined` strategy. `weighted_average`=Σ(coef·metric)/Σ(coef), `geometric_mean`=∏(metric^coef)^(1/Σcoef). | -| freqai.extrema_weighting.standardization | `none` | enum {`none`,`zscore`,`robust`,`mmad`,`power_yj`} | Standardization method applied to smoothed weighted extrema before normalization. `none`=w, `zscore`=(w-μ)/σ, `robust`=(w-median)/IQR, `mmad`=(w-median)/(MAD·k), `power_yj`=YJ(w). | -| freqai.extrema_weighting.robust_quantiles | [0.25, 0.75] | list[float] where 0 <= Q1 < Q3 <= 1 | Quantile range for robust standardization, Q1 and Q3. | -| freqai.extrema_weighting.mmad_scaling_factor | 1.4826 | float > 0 | Scaling factor for MMAD standardization. | -| freqai.extrema_weighting.normalization | `maxabs` | enum {`maxabs`,`minmax`,`sigmoid`,`none`} | Normalization method applied to smoothed weighted extrema. `maxabs`=w/max(\|w\|), `minmax`=low+(w-min)/(max-min)·(high-low), `sigmoid`=2·σ(scale·w)-1, `none`=w. | -| freqai.extrema_weighting.minmax_range | [-1.0, 1.0] | list[float] | Target range for `minmax` normalization, min and max. | -| freqai.extrema_weighting.sigmoid_scale | 1.0 | float > 0 | Scale parameter for `sigmoid` normalization, controls steepness. | -| freqai.extrema_weighting.gamma | 1.0 | float (0,10] | Contrast exponent applied to smoothed weighted extrema after normalization: >1 emphasizes extrema, values between 0 and 1 soften. | -| _Feature parameters_ | | | | -| freqai.feature_parameters.label_period_candles | min/max midpoint | int >= 1 | Zigzag labeling NATR horizon. | -| freqai.feature_parameters.min_label_period_candles | 12 | int >= 1 | Minimum labeling NATR horizon used for reversals labeling HPO. | -| freqai.feature_parameters.max_label_period_candles | 24 | int >= 1 | Maximum labeling NATR horizon used for reversals labeling HPO. | -| freqai.feature_parameters.label_natr_multiplier | min/max midpoint | float > 0 | Zigzag labeling NATR multiplier. (Deprecated alias: `freqai.feature_parameters.label_natr_ratio`) | -| freqai.feature_parameters.min_label_natr_multiplier | 9.0 | float > 0 | Minimum labeling NATR multiplier used for reversals labeling HPO. (Deprecated alias: `freqai.feature_parameters.min_label_natr_ratio`) | -| freqai.feature_parameters.max_label_natr_multiplier | 12.0 | float > 0 | Maximum labeling NATR multiplier used for reversals labeling HPO. (Deprecated alias: `freqai.feature_parameters.max_label_natr_ratio`) | -| freqai.feature_parameters.label_frequency_candles | `auto` | int >= 2 \| `auto` | Reversals labeling frequency. `auto` = max(2, 2 \* number of whitelisted pairs). | -| freqai.feature_parameters.label_weights | [1/7,1/7,1/7,1/7,1/7,1/7,1/7] | list[float] | Per-objective weights used in distance calculations to ideal point. Objectives: (1) number of detected reversals, (2) median swing amplitude, (3) median (swing amplitude / median volatility-threshold ratio), (4) median swing volume per candle, (5) median swing speed, (6) median swing efficiency ratio, (7) median swing volume-weighted efficiency ratio. | -| freqai.feature_parameters.label_p_order | `None` | float \| None | p-order parameter for distance metrics. Used by minkowski (default 2.0) and power_mean (default 1.0). Ignored by other metrics. | -| freqai.feature_parameters.label_method | `compromise_programming` | enum {`compromise_programming`,`topsis`,`kmeans`,`kmeans2`,`kmedoids`,`knn`,`medoid`} | HPO `label` Pareto front trial selection method. | -| freqai.feature_parameters.label_distance_metric | `euclidean` | string | Distance metric for `compromise_programming` and `topsis` methods. | -| freqai.feature_parameters.label_cluster_metric | `euclidean` | string | Distance metric for `kmeans`, `kmeans2`, and `kmedoids` methods. | -| freqai.feature_parameters.label_cluster_selection_method | `topsis` | enum {`compromise_programming`,`topsis`} | Cluster selection method for clustering-based label methods. | -| freqai.feature_parameters.label_cluster_trial_selection_method | `topsis` | enum {`compromise_programming`,`topsis`} | Best cluster trial selection method for clustering-based label methods. | -| freqai.feature_parameters.label_density_metric | method-dependent | string | Distance metric for `knn` and `medoid` methods. | -| freqai.feature_parameters.label_density_aggregation | `power_mean` | enum {`power_mean`,`quantile`,`min`,`max`} | Aggregation method for KNN neighbor distances. | -| freqai.feature_parameters.label_density_n_neighbors | 5 | int >= 1 | Number of neighbors for KNN. | -| freqai.feature_parameters.label_density_aggregation_param | aggregation-dependent | float \| None | Tunable for KNN neighbor distance aggregation: p-order (`power_mean`) or quantile value (`quantile`). | -| _Predictions extrema_ | | | | -| freqai.predictions_extrema.selection_method | `rank_extrema` | enum {`rank_extrema`,`rank_peaks`,`partition`} | Extrema selection method. `rank_extrema` ranks extrema values, `rank_peaks` ranks detected peak values, `partition` uses sign-based partitioning. | -| freqai.predictions_extrema.threshold_smoothing_method | `mean` | enum {`mean`,`isodata`,`li`,`minimum`,`otsu`,`triangle`,`yen`,`median`,`soft_extremum`} | Thresholding method for prediction thresholds smoothing. (Deprecated alias: `freqai.predictions_extrema.thresholds_smoothing`) | -| freqai.predictions_extrema.soft_extremum_alpha | 12.0 | float >= 0 | Alpha for `soft_extremum` thresholds smoothing. (Deprecated alias: `freqai.predictions_extrema.thresholds_alpha`) | -| freqai.predictions_extrema.outlier_threshold_quantile | 0.999 | float (0,1) | Quantile threshold for predictions outlier filtering. (Deprecated alias: `freqai.predictions_extrema.threshold_outlier`) | -| freqai.predictions_extrema.keep_extrema_fraction | 1.0 | float (0,1] | Fraction of extrema used for thresholds. `1.0` uses all, lower values keep only most significant. Applies to `rank_extrema` and `rank_peaks`; ignored for `partition`. (Deprecated alias: `freqai.predictions_extrema.extrema_fraction`) | -| _Optuna / HPO_ | | | | -| freqai.optuna_hyperopt.enabled | false | bool | Enables HPO. | -| freqai.optuna_hyperopt.sampler | `tpe` | enum {`tpe`,`auto`} | HPO sampler algorithm for `hp` namespace. `tpe` uses [TPESampler](https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.TPESampler.html) with multivariate and group, `auto` uses [AutoSampler](https://hub.optuna.org/samplers/auto_sampler). | -| freqai.optuna_hyperopt.label_sampler | `auto` | enum {`auto`,`tpe`,`nsgaii`,`nsgaiii`} | HPO sampler algorithm for multi-objective `label` namespace. `nsgaii` uses [NSGAIISampler](https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.NSGAIISampler.html), `nsgaiii` uses [NSGAIIISampler](https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.NSGAIIISampler.html). | -| freqai.optuna_hyperopt.storage | `file` | enum {`file`,`sqlite`} | HPO storage backend. | -| freqai.optuna_hyperopt.continuous | true | bool | Continuous HPO. | -| freqai.optuna_hyperopt.warm_start | true | bool | Warm start HPO with previous best value(s). | -| freqai.optuna_hyperopt.n_startup_trials | 15 | int >= 0 | HPO startup trials. | -| freqai.optuna_hyperopt.n_trials | 50 | int >= 1 | Maximum HPO trials. | -| freqai.optuna_hyperopt.n_jobs | CPU threads / 4 | int >= 1 | Parallel HPO workers. | -| freqai.optuna_hyperopt.timeout | 7200 | int >= 0 | HPO wall-clock timeout in seconds. | -| freqai.optuna_hyperopt.label_candles_step | 1 | int >= 1 | Step for Zigzag NATR horizon `label` search space. | -| freqai.optuna_hyperopt.space_reduction | false | bool | Enable/disable `hp` search space reduction based on previous best parameters. | -| freqai.optuna_hyperopt.space_fraction | 0.4 | float [0,1] | Fraction of the `hp` search space to use with `space_reduction`. Lower values create narrower search ranges around the best parameters. (Deprecated alias: `freqai.optuna_hyperopt.expansion_ratio`) | -| freqai.optuna_hyperopt.min_resource | 3 | int >= 1 | Minimum resource per [HyperbandPruner](https://optuna.readthedocs.io/en/stable/reference/generated/optuna.pruners.HyperbandPruner.html) rung. | -| freqai.optuna_hyperopt.seed | 1 | int >= 0 | HPO RNG seed. | +| Path | Default | Type / Range | Description | +| -------------------------------------------------------------- | ----------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| _Protections_ | | | | +| custom_protections.trade_duration_candles | 72 | int >= 1 | Estimated trade duration in candles. Scales protections stop duration candles and trade limit. | +| custom_protections.lookback_period_fraction | 0.5 | float (0,1] | Fraction of `fit_live_predictions_candles` used to calculate `lookback_period_candles` for _MaxDrawdown_ and _StoplossGuard_ protections. | +| custom_protections.cooldown.enabled | true | bool | Enable/disable _CooldownPeriod_ protection. | +| custom_protections.cooldown.stop_duration_candles | 4 | int >= 1 | Number of candles to wait before allowing new trades after a trade is closed. | +| custom_protections.drawdown.enabled | true | bool | Enable/disable _MaxDrawdown_ protection. | +| custom_protections.drawdown.max_allowed_drawdown | 0.2 | float (0,1) | Maximum allowed drawdown. | +| custom_protections.stoploss.enabled | true | bool | Enable/disable _StoplossGuard_ protection. | +| _Leverage_ | | | | +| leverage | `proposed_leverage` | float [1.0, max_leverage] | Leverage. Fallback to `proposed_leverage` for the pair. | +| _Exit pricing_ | | | | +| exit_pricing.trade_price_target_method | `moving_average` | enum {`moving_average`,`quantile_interpolation`,`weighted_average`} | Trade NATR computation method. (Deprecated alias: `exit_pricing.trade_price_target`) | +| exit_pricing.thresholds_calibration.decline_quantile | 0.75 | float (0,1) | PnL decline quantile threshold. | +| _Reversal confirmation_ | | | | +| reversal_confirmation.lookback_period_candles | 0 | int >= 0 | Prior confirming candles; 0 = none. (Deprecated alias: `reversal_confirmation.lookback_period`) | +| reversal_confirmation.decay_fraction | 0.5 | float (0,1] | Geometric per-candle volatility adjusted reversal threshold relaxation factor. (Deprecated alias: `reversal_confirmation.decay_ratio`) | +| reversal_confirmation.min_natr_multiplier_fraction | 0.0095 | float [0,1] | Lower bound fraction for volatility adjusted reversal threshold. (Deprecated alias: `reversal_confirmation.min_natr_ratio_percent`) | +| reversal_confirmation.max_natr_multiplier_fraction | 0.075 | float [0,1] | Upper bound fraction (>= lower bound) for volatility adjusted reversal threshold. (Deprecated alias: `reversal_confirmation.max_natr_ratio_percent`) | +| _Regressor model_ | | | | +| freqai.regressor | `xgboost` | enum {`xgboost`,`lightgbm`,`histgradientboostingregressor`} | Machine learning regressor algorithm. | +| _Extrema smoothing_ | | | | +| freqai.extrema_smoothing.method | `gaussian` | enum {`gaussian`,`kaiser`,`triang`,`smm`,`sma`,`savgol`,`gaussian_filter1d`} | Extrema smoothing method (`smm`=median, `sma`=mean, `savgol`=Savitzky–Golay). | +| freqai.extrema_smoothing.window_candles | 5 | int >= 3 | Smoothing window length (candles). (Deprecated alias: `freqai.extrema_smoothing.window`) | +| freqai.extrema_smoothing.beta | 8.0 | float > 0 | Shape parameter for `kaiser` kernel. | +| freqai.extrema_smoothing.polyorder | 3 | int >= 1 | Polynomial order for `savgol` smoothing. | +| freqai.extrema_smoothing.mode | `mirror` | enum {`mirror`,`constant`,`nearest`,`wrap`,`interp`} | Boundary mode for `savgol` and `gaussian_filter1d`. | +| freqai.extrema_smoothing.sigma | 1.0 | float > 0 | Gaussian `sigma` for `gaussian_filter1d` smoothing. | +| _Extrema weighting_ | | | | +| freqai.extrema_weighting.strategy | `none` | enum {`none`,`amplitude`,`amplitude_threshold_ratio`,`volume_rate`,`speed`,`efficiency_ratio`,`volume_weighted_efficiency_ratio`,`combined`} | Extrema weighting metric: none (`none`), swing amplitude (`amplitude`), swing amplitude / median volatility-threshold ratio (`amplitude_threshold_ratio`), swing volume per candle (`volume_rate`), swing speed (`speed`), swing efficiency ratio (`efficiency_ratio`), swing volume-weighted efficiency ratio (`volume_weighted_efficiency_ratio`), or combined metrics aggregation (`combined`). | +| freqai.extrema_weighting.metric_coefficients | {} | dict[str, float] | Per-metric coefficients for `combined` strategy. Keys: `amplitude`, `amplitude_threshold_ratio`, `volume_rate`, `speed`, `efficiency_ratio`, `volume_weighted_efficiency_ratio`. | +| freqai.extrema_weighting.aggregation | `weighted_average` | enum {`weighted_average`,`geometric_mean`} | Metric aggregation method for `combined` strategy. `weighted_average`=Σ(coef·metric)/Σ(coef), `geometric_mean`=∏(metric^coef)^(1/Σcoef). | +| freqai.extrema_weighting.standardization | `none` | enum {`none`,`zscore`,`robust`,`mmad`,`power_yj`} | Standardization method applied to smoothed weighted extrema before normalization. `none`=w, `zscore`=(w-μ)/σ, `robust`=(w-median)/IQR, `mmad`=(w-median)/(MAD·k), `power_yj`=YJ(w). | +| freqai.extrema_weighting.robust_quantiles | [0.25, 0.75] | list[float] where 0 <= Q1 < Q3 <= 1 | Quantile range for robust standardization, Q1 and Q3. | +| freqai.extrema_weighting.mmad_scaling_factor | 1.4826 | float > 0 | Scaling factor for MMAD standardization. | +| freqai.extrema_weighting.normalization | `maxabs` | enum {`maxabs`,`minmax`,`sigmoid`,`none`} | Normalization method applied to smoothed weighted extrema. `maxabs`=w/max(\|w\|), `minmax`=low+(w-min)/(max-min)·(high-low), `sigmoid`=2·σ(scale·w)-1, `none`=w. | +| freqai.extrema_weighting.minmax_range | [-1.0, 1.0] | list[float] | Target range for `minmax` normalization, min and max. | +| freqai.extrema_weighting.sigmoid_scale | 1.0 | float > 0 | Scale parameter for `sigmoid` normalization, controls steepness. | +| freqai.extrema_weighting.gamma | 1.0 | float (0,10] | Contrast exponent applied to smoothed weighted extrema after normalization: >1 emphasizes extrema, values between 0 and 1 soften. | +| _Feature parameters_ | | | | +| freqai.feature_parameters.label_period_candles | min/max midpoint | int >= 1 | Zigzag labeling NATR horizon. | +| freqai.feature_parameters.min_label_period_candles | 12 | int >= 1 | Minimum labeling NATR horizon used for reversals labeling HPO. | +| freqai.feature_parameters.max_label_period_candles | 24 | int >= 1 | Maximum labeling NATR horizon used for reversals labeling HPO. | +| freqai.feature_parameters.label_natr_multiplier | min/max midpoint | float > 0 | Zigzag labeling NATR multiplier. (Deprecated alias: `freqai.feature_parameters.label_natr_ratio`) | +| freqai.feature_parameters.min_label_natr_multiplier | 9.0 | float > 0 | Minimum labeling NATR multiplier used for reversals labeling HPO. (Deprecated alias: `freqai.feature_parameters.min_label_natr_ratio`) | +| freqai.feature_parameters.max_label_natr_multiplier | 12.0 | float > 0 | Maximum labeling NATR multiplier used for reversals labeling HPO. (Deprecated alias: `freqai.feature_parameters.max_label_natr_ratio`) | +| freqai.feature_parameters.label_frequency_candles | `auto` | int >= 2 \| `auto` | Reversals labeling frequency. `auto` = max(2, 2 \* number of whitelisted pairs). | +| freqai.feature_parameters.label_weights | [1/7,1/7,1/7,1/7,1/7,1/7,1/7] | list[float] | Per-objective weights used in distance calculations to ideal point. Objectives: (1) number of detected reversals, (2) median swing amplitude, (3) median (swing amplitude / median volatility-threshold ratio), (4) median swing volume per candle, (5) median swing speed, (6) median swing efficiency ratio, (7) median swing volume-weighted efficiency ratio. | +| freqai.feature_parameters.label_p_order | `None` | float \| None | p-order parameter for distance metrics. Used by minkowski (default 2.0) and power_mean (default 1.0). Ignored by other metrics. | +| freqai.feature_parameters.label_method | `compromise_programming` | enum {`compromise_programming`,`topsis`,`kmeans`,`kmeans2`,`kmedoids`,`knn`,`medoid`} | HPO `label` Pareto front trial selection method. | +| freqai.feature_parameters.label_distance_metric | `euclidean` | string | Distance metric for `compromise_programming` and `topsis` methods. | +| freqai.feature_parameters.label_cluster_metric | `euclidean` | string | Distance metric for `kmeans`, `kmeans2`, and `kmedoids` methods. | +| freqai.feature_parameters.label_cluster_selection_method | `topsis` | enum {`compromise_programming`,`topsis`} | Cluster selection method for clustering-based label methods. | +| freqai.feature_parameters.label_cluster_trial_selection_method | `topsis` | enum {`compromise_programming`,`topsis`} | Best cluster trial selection method for clustering-based label methods. | +| freqai.feature_parameters.label_density_metric | method-dependent | string | Distance metric for `knn` and `medoid` methods. | +| freqai.feature_parameters.label_density_aggregation | `power_mean` | enum {`power_mean`,`quantile`,`min`,`max`} | Aggregation method for KNN neighbor distances. | +| freqai.feature_parameters.label_density_n_neighbors | 5 | int >= 1 | Number of neighbors for KNN. | +| freqai.feature_parameters.label_density_aggregation_param | aggregation-dependent | float \| None | Tunable for KNN neighbor distance aggregation: p-order (`power_mean`) or quantile value (`quantile`). | +| _Predictions extrema_ | | | | +| freqai.predictions_extrema.selection_method | `rank_extrema` | enum {`rank_extrema`,`rank_peaks`,`partition`} | Extrema selection method. `rank_extrema` ranks extrema values, `rank_peaks` ranks detected peak values, `partition` uses sign-based partitioning. | +| freqai.predictions_extrema.threshold_smoothing_method | `mean` | enum {`mean`,`isodata`,`li`,`minimum`,`otsu`,`triangle`,`yen`,`median`,`soft_extremum`} | Thresholding method for prediction thresholds smoothing. (Deprecated alias: `freqai.predictions_extrema.thresholds_smoothing`) | +| freqai.predictions_extrema.soft_extremum_alpha | 12.0 | float >= 0 | Alpha for `soft_extremum` thresholds smoothing. (Deprecated alias: `freqai.predictions_extrema.thresholds_alpha`) | +| freqai.predictions_extrema.outlier_threshold_quantile | 0.999 | float (0,1) | Quantile threshold for predictions outlier filtering. (Deprecated alias: `freqai.predictions_extrema.threshold_outlier`) | +| freqai.predictions_extrema.keep_extrema_fraction | 1.0 | float (0,1] | Fraction of extrema used for thresholds. `1.0` uses all, lower values keep only most significant. Applies to `rank_extrema` and `rank_peaks`; ignored for `partition`. (Deprecated alias: `freqai.predictions_extrema.extrema_fraction`) | +| _Optuna / HPO_ | | | | +| freqai.optuna_hyperopt.enabled | false | bool | Enables HPO. | +| freqai.optuna_hyperopt.sampler | `tpe` | enum {`tpe`,`auto`} | HPO sampler algorithm for `hp` namespace. `tpe` uses [TPESampler](https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.TPESampler.html) with multivariate and group, `auto` uses [AutoSampler](https://hub.optuna.org/samplers/auto_sampler). | +| freqai.optuna_hyperopt.label_sampler | `auto` | enum {`auto`,`tpe`,`nsgaii`,`nsgaiii`} | HPO sampler algorithm for multi-objective `label` namespace. `nsgaii` uses [NSGAIISampler](https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.NSGAIISampler.html), `nsgaiii` uses [NSGAIIISampler](https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.NSGAIIISampler.html). | +| freqai.optuna_hyperopt.storage | `file` | enum {`file`,`sqlite`} | HPO storage backend. | +| freqai.optuna_hyperopt.continuous | true | bool | Continuous HPO. | +| freqai.optuna_hyperopt.warm_start | true | bool | Warm start HPO with previous best value(s). | +| freqai.optuna_hyperopt.n_startup_trials | 15 | int >= 0 | HPO startup trials. | +| freqai.optuna_hyperopt.n_trials | 50 | int >= 1 | Maximum HPO trials. | +| freqai.optuna_hyperopt.n_jobs | CPU threads / 4 | int >= 1 | Parallel HPO workers. | +| freqai.optuna_hyperopt.timeout | 7200 | int >= 0 | HPO wall-clock timeout in seconds. | +| freqai.optuna_hyperopt.label_candles_step | 1 | int >= 1 | Step for Zigzag NATR horizon `label` search space. | +| freqai.optuna_hyperopt.space_reduction | false | bool | Enable/disable `hp` search space reduction based on previous best parameters. | +| freqai.optuna_hyperopt.space_fraction | 0.4 | float [0,1] | Fraction of the `hp` search space to use with `space_reduction`. Lower values create narrower search ranges around the best parameters. (Deprecated alias: `freqai.optuna_hyperopt.expansion_ratio`) | +| freqai.optuna_hyperopt.min_resource | 3 | int >= 1 | Minimum resource per [HyperbandPruner](https://optuna.readthedocs.io/en/stable/reference/generated/optuna.pruners.HyperbandPruner.html) rung. | +| freqai.optuna_hyperopt.seed | 1 | int >= 0 | HPO RNG seed. | ## ReforceXY -- 2.43.0