class SineSphere extends SCPattern { float modelrad = sqrt((model.xMax)*(model.xMax) + (model.yMax)*(model.yMax) + (model.zMax)*(model.zMax)); private BasicParameter yrotspeed = new BasicParameter("yspeed", 3000, 1, 10000); private BasicParameter yrot2speed = new BasicParameter("y2speed", 4000, 1, 15000); private BasicParameter yrot3speed = new BasicParameter("y3speed", 1400, 1, 15000); private BasicParameter vibrationrate = new BasicParameter("vib", 3000, 1, 10000); private SawLFO yrot = new SawLFO(0, TWO_PI, yrotspeed); private SawLFO yrot2 = new SawLFO(0, -TWO_PI, yrot2speed); private SawLFO yrot3 = new SawLFO(0, -TWO_PI, yrot3speed); public BasicParameter huespread = new BasicParameter("Hue", 0, 360); public BasicParameter widthparameter= new BasicParameter("Width", 20, 1, 60); public BasicParameter vibration_magnitude = new BasicParameter("Vmag", 20, 2, modelrad/2); public BasicParameter scale = new BasicParameter("Scale", 1, .1, 5); private int pitch = 0; private int channel = 0; private int velocity = 0; private int cur = 0; public final LXProjection sinespin; public final LXProjection sinespin2; public final LXProjection sinespin3; Pick Sshape; public BasicParameter rotationx = new BasicParameter("rotx", 0, 0, 1 ); public BasicParameter rotationy = new BasicParameter("roty", 1, 0, 1); public BasicParameter rotationz = new BasicParameter("rotz", 0, 0, 1); public final PVector P = new PVector(); class Sphery { float f1xcenter, f1ycenter, f1zcenter, f2xcenter , f2ycenter, f2zcenter; //second three are for an ellipse with two foci private SinLFO vibration; private SinLFO surfacewave; private SinLFO xbounce; public SinLFO ybounce; private SinLFO zbounce; float vibration_magnitude, vperiod; //vibration_min; vibration_max; //public BasicParameter huespread; public BasicParameter bouncerate; public BasicParameter bounceamp; public BasicParameter vibrationrate; public final PVector circlecenter = new PVector(); public Sphery(float f1xcenter, float f1ycenter, float f1zcenter, float vibration_magnitude , float vperiod) { this.f1xcenter = f1xcenter; this.f1ycenter = f1ycenter; this.f1zcenter = f1zcenter; this.vibration_magnitude = vibration_magnitude; this.vperiod = vperiod; //addParameter(bounceamp = new BasicParameter("Amp", .5)); //addParameter(bouncerate = new BasicParameter("Rate", .5)); //ybounce.modulateDurationBy(bouncerate); //addParameter(vibrationrate = new BasicParameter("vibration", 1000, 10000)); //addParameter(widthparameter = new BasicParameter("Width", .2)); //addModulator(xbounce = new SinLFO(model.xMax/3, 2*model.yMax/3, 2000)).trigger(); addModulator(ybounce= new SinLFO(model.yMax/3, 2*model.yMax/3, 240000)).trigger(); //bounce.modulateDurationBy //addModulator(bounceamp); //ybounce.setMagnitude(bouncerate); addModulator( vibration = new SinLFO( modelrad/15 - vibration_magnitude , modelrad/15 + vibration_magnitude, vperiod)).trigger(); //vibration.setPeriod(240000/lx.tempo.bpm()); } // public Sphery(float f1xcenter, float f1ycenter, float f1zcenter, float vibration_magnitude, float vperiod) // { // this.f1xcenter = f1xcenter; // this.f1ycenter = f1ycenter; // this.f1zcenter = f1zcenter; // this.vibration_magnitude = vibration_magnitude; // this.vperiod = vperiod; // addModulator(ybounce= new SinLFO(model.yMax/3, 2*model.yMax/3, 240000)).trigger(); //bounce.modulateDurationBy // addModulator( vibration = new SinLFO( modelrad/10 - vibration_magnitude , modelrad/10 + vibration_magnitude, vperiod)).trigger(); //vibration.setPeriod(240000/lx.tempo.bpm()); // } //for an ellipse // public Sphery(float f1xcenter, float f1ycenter, float f1zcenter, float f2xcenter, float f2ycenter, float f2zcenter, // float vibration_min, float vibration_max, float vperiod) // { // this.f1xcenter = f1xcenter; // this.f1ycenter = f1ycenter; // this.f1zcenter = f1zcenter; // this.f2xcenter = f2xcenter; // this.f2ycenter = f2ycenter; // this.f2zcenter = f2zcenter; // this.vibration_min = vibration_min; // this.vibration_max = vibration_max; // this.vperiod = vperiod; // //addModulator(xbounce = new SinLFO(model.xMax/3, 2*model.yMax/3, 2000)).trigger(); // addModulator(ybounce).trigger(); // addModulator( vibration = new SinLFO(vibration_min , vibration_max, lx.tempo.rampf())).trigger(); //vibration.modulateDurationBy(vx); // addParameter(widthparameter = new BasicParameter("Width", .1)); // //addParameter(huespread = new BasicParameter("bonk", .2)); // } public int c1c (float a) { return round(100*constrain(a,0,1)); } void setVibrationPeriod(double period){ // to-do: make this conditional upon time signature this.vibration.setPeriod(period); } void setVibrationMagnitude(double mag){ //to-do: make this optionally conditional upon decibel volume, frequency spectrum) this.vibration.setRange(-mag,mag); } float distfromcirclecenter(float px, float py, float pz, float f1x, float f1y, float f1z) { return dist(px, py, pz, f1x, f1y, f1z); } //void updatespherey(deltaMs, ) float quadrant(PVector q) { float qtheta = atan2( (q.x-f1xcenter) , (q.z - f1zcenter) ); return map(qtheta, -PI/2, PI/2, 180-huespread.getValuef(), 220+huespread.getValuef()); //if (q.x > f1xcenter ) {return 140 ;} //else {return 250;} } // float noisesat(PVector q) { // return noise() // } color spheryvalue (PVector p) { circlecenter.set(this.f1xcenter, this.f1ycenter, this.f1zcenter); //switch(sShpape.cur() ) {} float b = max(0, 100 - widthparameter.getValuef()*abs(p.dist(circlecenter) - vibration.getValuef()) ); if (b <= 0) { return 0; } return lx.hsb( constrain(quadrant(p), 0, 360), // constrain(100*noise(quadrant(p)), 0, 100), 100, b ); } color ellipsevalue(float px, float py, float pz , float f1xc, float f1yc, float f1zc, float f2xc, float f2yc, float f2zc) { //switch(sShpape.cur() ) {} return lx.hsb(huespread.getValuef()*5*px, dist(model.xMax-px, model.yMax-py, model.zMax-pz, f1xc, f1yc, f1zc) , max(0, 100 - 100*widthparameter.getValuef() * abs( (dist(px, py, pz, f1xc, ybounce.getValuef(), f1zc) + (dist(px, py , pz, f2xc, ybounce.getValuef(), f2zc) ) )/2 - 1.2*vibration.getValuef() ) ) ) ; } void run(double deltaMs) { float vv = vibration.getValuef(); float ybv = ybounce.getValuef(); } } // public boolean gridPressed(int row, int co){ // midiengine.grid.setState(); // return true; // } public boolean noteOn(Note note) { pitch= note.getPitch(); velocity=note.getVelocity(); channel=note.getChannel(); return true; } public boolean gridPressed(int row, int col) { pitch = row; channel = col; cur = NumApcCols*(pitch-53)+col; //setState(row, col, 0 ? 1 : 0); return true; } //public grid final Sphery[] spherys; SineSphere(GLucose glucose) { super(glucose); println("modelrad " + modelrad); sinespin = new LXProjection(model); sinespin2 = new LXProjection(model); sinespin3= new LXProjection(model); addParameter(huespread); addParameter(vibrationrate); addParameter(widthparameter); addParameter(rotationx); addParameter(rotationy); addParameter(rotationz); addParameter(yrotspeed); addParameter(yrot2speed); addParameter(yrot3speed); addParameter(vibration_magnitude); addParameter(scale); addModulator(yrot).trigger(); addModulator(yrot2).trigger(); addModulator(yrot3).trigger(); //addParameter(huespread); //Sshape = addPick("Shape", , 1); spherys = new Sphery[] { new Sphery(model.xMax/4, model.yMax/2, model.zMax/2, modelrad/8, 3000), new Sphery(.75*model.xMax, model.yMax/2, model.zMax/2, modelrad/10, 2000), new Sphery(model.xMax/2, model.yMax/2, model.zMax/2, modelrad/5, 2300), new Sphery(.7*model.xMax, .65*model.yMax, .5*model.zMax, modelrad/7, 3500), new Sphery(.75*model.xMax, .8*model.yMax, .7*model.zMax, modelrad/10, 2000), new Sphery(model.xMax/2, model.yMax/2, model.zMax/2, modelrad/4, 2300), // new Sphery(model.xMax/4, model.yMax/2, model.zMax/2, modelrad/16, modelrad/8, 3000), // new Sphery(.75*model.xMax, model.yMax/2, model.zMax/2, modelrad/20, modelrad/10, 2000), // new Sphery(model.xMax/2, model.yMax/2, model.zMax/2, modelrad/4, modelrad/8, 2300), // new Sphery(.7*model.xMax, .65*model.yMax, .5*model.zMax, modelrad/14, modelrad/7, 3500), // new Sphery(.75*model.xMax, .8*model.yMax, .7*model.zMax, modelrad/20, modelrad/10, 2000), // new Sphery(model.xMax/2, model.yMax/2, model.zMax/2, modelrad/4, modelrad/8, 2300), }; } // public void onParameterChanged(LXParameter parameter) // { // for (Sphery s : spherys) { // if (s == null) continue; // double bampv = s.bounceamp.getValue(); // double brv = s.bouncerate.getValue(); // double tempobounce = lx.tempo.bpm(); // if (parameter == s.bounceamp) // { // s.ybounce.setRange(bampv*model.yMax/3 , bampv*2*model.yMax/3, brv); // } // else if ( parameter == s.bouncerate ) // { // s.ybounce.setDuration(120000./tempobounce); // } // } // } public void run( double deltaMs) { float t = lx.tempo.rampf(); float bpm = lx.tempo.bpmf(); float scalevalue = scale.getValuef(); // switch (cur) { // case 1: t = map(.5*t ,0,.5, 0,1); bpm = .5*bpm; break; // case 2: t = t; bpm = bpm; break; // case 3: t = map(2*t,0,2,0,1); bpm = 2*bpm; break; // default: t= t; bpm = bpm; // } //switch(sphery.colorscheme) for ( Sphery s: spherys){ //s.vibration.setBasis(t); s.setVibrationPeriod(vibrationrate.getValuef()); // s.setVibrationMagnitude(vibration_magnitude.getValuef()); } sinespin.reset() // Translate so the center of the car is the origin, offset .center() .scale(scalevalue, scalevalue, scalevalue) // Rotate around the origin (now the center of the car) about an y-vector .rotate(yrot.getValuef(), rotationx.getValuef(), rotationy.getValuef() , rotationz.getValuef()) .translate(model.cx, model.cy, model.cz); for (LXVector p: sinespin) // for (Point p: model.points) { P.set(p.x, p.y, p.z); // PVector P = new PVector(p.x, p.y, p.z); color c = #000000; c = blendIfColor(c, spherys[1].spheryvalue(P), ADD); c = blendIfColor(c, spherys[0].spheryvalue(P), ADD); c = blendIfColor(c, spherys[2].spheryvalue(P),ADD); colors[p.index] = c; } sinespin2.reset() .center() .scale(scalevalue,scalevalue,scalevalue) .rotate(yrot2.getValuef(), rotationx.getValuef(), rotationy.getValuef() , rotationz.getValuef()) .translate(model.cx,model.cy,model.cz); for (LXVector p: sinespin2) { color c = 0; // PVector P = new PVector(p.x, p.y, p.z); P.set(p.x, p.y, p.z); c = blendIfColor(c, spherys[3].spheryvalue(P),ADD); colors[p.index] = blendIfColor(colors[p.index], c , ADD); } sinespin3.reset() .center() .scale(scalevalue,scalevalue,scalevalue) .rotate(yrot3.getValuef(),-1 + rotationx.getValuef(), rotationy.getValuef(), rotationz.getValuef()) .translate(model.cx, model.cy, model.cz); for (LXVector p: sinespin3) { color c = 0; // PVector P = new PVector(p.x, p.y, p.z); P.set(p.x, p.y, p.z); c = blendIfColor(c, spherys[4].spheryvalue(P),ADD); colors[p.index] = blendIfColor(colors[p.index], c , ADD); } } color blendIfColor(color c1, color c2, int mode) { if (c2 != 0) { return blendColor(c1, c2, mode); } return c1; } // color c = 0; // c = blendColor(c, spherys[3].ellipsevalue(Px.x, Px.y, Px.z, model.xMax/4, model.yMax/4, model.zMax/4, 3*model.xMax/4, 3*model.yMax/4, 3*model.zMax/4),ADD); // return c; // } // return lx.hsb(0,0,0); // // else if(spheremode ==2) // { color c = 0; // return lx.hsb(CalcCone( (xyz by = new xyz(0,spherys[2].ybounce.getValuef(),0) ), Px, mid) ); // } // } } class CubeCurl extends SCPattern{ float CH, CW, diag; ArrayList cubeorigin = new ArrayList(); ArrayList centerlist = new ArrayList(); private SinLFO curl = new SinLFO(0, Cube.EDGE_HEIGHT, 5000 ); private SinLFO bg = new SinLFO(180, 220, 3000); CubeCurl(GLucose glucose){ super(glucose); addModulator(curl).trigger(); addModulator(bg).trigger(); this.CH = Cube.EDGE_HEIGHT; this.CW = Cube.EDGE_WIDTH; this.diag = sqrt(CW*CW + CW*CW); ArrayList centerlistrelative = new ArrayList(); for (int i = 0; i < model.cubes.size(); i++){ Cube a = model.cubes.get(i); cubeorigin.add(new PVector(a.x, a.y, a.z)); centerlist.add(new PVector(a.cx, a.cy, a.cz) ); } } //there is definitely a better way of doing this! PVector centerofcube(int i) { Cube c = model.cubes.get(i); PVector cubecenter = new PVector(c.cx, c.cy, c.cz); return cubecenter; } void run(double deltaMs){ for (int i =0; i < model.cubes.size(); i++) { Cube c = model.cubes.get(i); float cfloor = c.y; // if (i%3 == 0){ // for (LXPoint p : c.points ){ // // colors[p.index]=color(0,0,0); // //float dif = (p.y - c.y); // //colors[p.index] = color( bg.getValuef() , 80 , dif < curl.getValuef() ? 80 : 0, ADD); // } // } // else if (i%3 == 1) { // for (LXPoint p: c.points){ // colors[p.index]=color(0,0,0); // float dif = (p.y - c.y); // // colors[p.index] = // // color(bg.getValuef(), // // map(curl.getValuef(), 0, Cube.EDGE_HEIGHT, 20, 100), // // 100 - 10*abs(dif - curl.getValuef()), ADD ); // } // } // else if (i%3 == 2){ // centerlist[i].sub(cubeorigin(i); for (LXPoint p: c.points) { PVector pv = new PVector(p.x, p.y, p.z); colors[p.index] =color( constrain(4* pv.dist(centerlist.get(i)), 0, 360) , 50, 100 ); // colors[p.index] =color(constrain(centerlist[i].x, 0, 360), constrain(centerlist[i].y, 0, 100), ); } //} } } } class HueTestHSB extends SCPattern{ BasicParameter HueT = new BasicParameter("Hue", .5); BasicParameter SatT = new BasicParameter("Sat", .5); BasicParameter BriT = new BasicParameter("Bright", .5); HueTestHSB(GLucose glucose) { super(glucose); addParameter(HueT); addParameter(SatT); addParameter(BriT); } void run(double deltaMs){ for (LXPoint p : model.points) { color c = 0; c = blendColor(c, lx.hsb(360*HueT.getValuef(), 100*SatT.getValuef(), 100*BriT.getValuef()), ADD); colors[p.index]= c; } int now= millis(); if (now % 1000 <= 20) { println("Hue: " + 360*HueT.getValuef() + "Sat: " + 100*SatT.getValuef() + "Bright: " + 100*BriT.getValuef()); } } }