/** * A Projection of sin wave in 3d space. * It sort of looks like an animal swiming around in water. * Angle sliders are sort of a work in progress that allow yo to change the crazy ways it moves around. * Hue slider allows you to control how different the colors are along the wave. * * This code copied heavily from Tim and Slee. */ class Swim extends SCPattern { // Projection stuff private final Projection projection; SawLFO rotation = new SawLFO(0, TWO_PI, 19000); SinLFO yPos = new SinLFO(-25, 25, 12323); final BasicParameter xAngle = new BasicParameter("XANG", 0.9); final BasicParameter yAngle = new BasicParameter("YANG", 0.3); final BasicParameter zAngle = new BasicParameter("ZANG", 0.3); final BasicParameter hueScale = new BasicParameter("HUE", 0.3); public Swim(GLucose glucose) { super(glucose); projection = new Projection(model); addParameter(xAngle); addParameter(yAngle); addParameter(zAngle); addParameter(hueScale); addModulator(rotation).trigger(); addModulator(yPos).trigger(); } int beat = 0; float prevRamp = 0; void run(int deltaMs) { // Sync to the beat float ramp = (float)lx.tempo.ramp(); if (ramp < prevRamp) { beat = (beat + 1) % 4; } prevRamp = ramp; float phase = (beat+ramp) / 2.0 * 2 * PI; float denominator = max(xAngle.getValuef() + yAngle.getValuef() + zAngle.getValuef(), 1); projection.reset(model) // Swim around the world .rotate(rotation.getValuef(), xAngle.getValuef() / denominator, yAngle.getValuef() / denominator, zAngle.getValuef() / denominator) .translateCenter(model, 0, 50 + yPos.getValuef(), 0); float model_height = model.yMax - model.yMin; float model_width = model.xMax - model.xMin; for (Coord p : projection) { float x_percentage = (p.x - model.xMin)/model_width; // Multiply by 1.4 to shrink the size of the sin wave to be less than the height of the cubes. float y_in_range = 1.4 * (2*p.y - model.yMax - model.yMin) / model_height; float sin_x = sin(phase + 2 * PI * x_percentage); // Color fade near the top of the sin wave float v1 = sin_x > y_in_range ? (100 + 100*(y_in_range - sin_x)) : 0; float hue_color = (lx.getBaseHuef() + hueScale.getValuef() * (abs(p.x-model.xMax/2.)*.3 + abs(p.y-model.yMax/2)*.9 + abs(p.z - model.zMax/2.))) % 360; colors[p.index] = color(hue_color, 70, v1); } } } /** * The idea here is to do another sin wave pattern, but with less rotation and more of a breathing / heartbeat affect with spheres above / below the wave. * This is not done. */ class Breathe extends SCPattern { final BasicParameter hueScale = new BasicParameter("HUE", 0.3); class Sphere { float x, y, z; } // Projection stuff private final Projection projection; SinLFO sphere1Z = new SinLFO(0, 80, 15323); SinLFO sphere2Z = new SinLFO(-80, 0, 8323); SawLFO rotation = new SawLFO(- PI / 16, PI / 16, 7334); private final Sphere[] spheres; private final float centerX, centerY, centerZ, modelHeight, modelWidth, modelDepth; SinLFO heightMod = new SinLFO(0.6, 1.85, 17298); public Breathe(GLucose glucose) { super(glucose); // Unused for now projection = new Projection(model); addParameter(hueScale); spheres = new Sphere[2]; centerX = (model.xMax + model.xMin) / 2; centerY = (model.yMax + model.yMin) / 2; centerZ = (model.zMax + model.zMin) / 2; modelHeight = model.yMax - model.yMin; modelWidth = model.xMax - model.xMin; modelDepth = model.zMax - model.zMin; spheres[0] = new Sphere(); spheres[0].x = 3*modelWidth/8; spheres[0].y = centerY + 10; spheres[0].z = centerZ; spheres[1] = new Sphere(); spheres[1].x = 7*modelWidth/8; spheres[1].y = centerY - 20; spheres[1].z = centerZ; addModulator(sphere1Z).trigger(); addModulator(sphere2Z).trigger(); addModulator(heightMod).trigger(); } int beat = 0; float prevRamp = 0; void run(int deltaMs) { // Sync to the beat float ramp = (float)lx.tempo.ramp(); if (ramp < prevRamp) { beat = (beat + 1) % 4; } prevRamp = ramp; float phase = (beat+ramp) * PI % (2 * PI); projection.reset(model) .rotate(rotation.getValuef(), 0, 1, 0); for (Coord p : projection) { float x_percentage = (p.x - model.xMin)/modelWidth; float y_in_range = heightMod.getValuef() * (2*p.y - model.yMax - model.yMin) / modelHeight; float sin_x = sin(PI / 2 + phase + 2 * PI * x_percentage); // Color fade near the top of the sin wave float v1 = sin_x > y_in_range ? (100 + 100*(y_in_range - sin_x)) : 0; float hue_color = (lx.getBaseHuef() + hueScale.getValuef() * (abs(p.x-model.xMax/2.)*.6 + abs(p.y-model.yMax/2)*.9 + abs(p.z - model.zMax/2.))) % 360; color c = color(hue_color, 60, v1); // Now draw the spheres for (Sphere s : spheres) { float phase_x = (s.x - phase * modelWidth / ( 2 * PI)) % modelWidth; float x_dist = LXUtils.wrapdistf(p.x, phase_x, modelWidth); float sphere_z = (s == spheres[0]) ? (s.z + sphere1Z.getValuef()) : (s.z - sphere2Z.getValuef()); float d = sqrt(pow(x_dist, 2) + pow(p.y - s.y, 2) + pow(p.z - sphere_z, 2)); float r = 25; float distance_value = max(0, 1 - max(0, d - r) / 10); float beat_value = 1.0; if (s == spheres[0]) { // beat_value = .2 + ((beat % 4 >= 2) ? ((4 - (ramp + beat)) / 2) *.8 : 0); } else { // beat_value = .2 + ((beat % 4 < 2) ? ((2 - (ramp + beat)) / 2) *.8 : 0); } float value = min(beat_value, distance_value); c = blendColor(c, color((hue_color + 180) % 360, 100, min(1, value) * 100), ADD); } colors[p.index] = c; } } }