class L8onLife extends SCPattern { // Controls the rate of life algorithm ticks, in milliseconds private BasicParameter rateParameter = new BasicParameter("RATE", 122.5, 0.0, 1000.0); // Controls if the cubes should be randomized even if something changes. Set above 0.5 to randomize cube aliveness. private BasicParameter randomParameter = new BasicParameter("RAND", 0.0); // Controls the brightness of dead cubes. private BasicParameter deadParameter = new BasicParameter("DEAD", 25.0, 0.0, 100.0); // Controls the saturation. private BasicParameter saturationParameter = new BasicParameter("SAT", 90.0, 0.0, 100.0); public final double MIN_ALIVE_PROBABILITY = 0.2; public final double MAX_ALIVE_PROBABILITY = 0.9; private final SinLFO xPos = new SinLFO(0, model.xMax, 4500); private final SinLFO zPos = new SinLFO(0, model.zMax, 2500); class CubeState { // Index of cube in glucose.model.cubes public Integer index; // Boolean which describes if cube is alive. public boolean alive; // List of this cubes neighbors public List neighbors; public CubeState(Integer index, boolean alive, List neighbors) { this.index = index; this.alive = alive; this.neighbors = neighbors; } } // Contains the state of all cubes by index. private List cube_states; // Contains the amount of time since the last cycle of life. private int time_since_last_run; // Boolean describing if life changes were made during the current run. private boolean any_changes_this_run; // Hold the new lives private List new_lives; public L8onLife(GLucose glucose) { super(glucose); //Print debug info about the cubes. //outputCubeInfo(); initCubeStates(); time_since_last_run = 0; any_changes_this_run = false; new_lives = new ArrayList(); addParameter(rateParameter); addParameter(randomParameter); addParameter(deadParameter); addParameter(saturationParameter); addModulator(xPos).trigger(); addModulator(zPos).trigger(); } public void run(double deltaMs) { Integer i = 0; CubeState cube_state; any_changes_this_run = false; new_lives.clear(); time_since_last_run += deltaMs; for (Cube cube : model.cubes) { cube_state = this.cube_states.get(i); if(shouldLightCube(cube_state)) { lightLiveCube(cube); } else { lightDeadCube(cube); } i++; } boolean should_randomize_anyway = (randomParameter.getValuef() > 0.5); if(should_randomize_anyway || !any_changes_this_run) { randomizeCubeStates(); } else { applyNewLives(); } if(time_since_last_run >= rateParameter.getValuef()) { time_since_last_run = 0; } } public void lightLiveCube(Cube cube) { for (LXPoint p : cube.points) { float hv = max(0, lx.getBaseHuef() - abs(p.z - zPos.getValuef())); colors[p.index] = lx.hsb( hv, saturationParameter.getValuef(), 75 ); } } public void lightDeadCube(Cube cube) { for (LXPoint p : cube.points) { float hv = max(0, lx.getBaseHuef() - abs(p.x - xPos.getValuef())); double dead_bright = deadParameter.getValuef() * Math.random(); colors[p.index] = lx.hsb( hv, saturationParameter.getValuef(), dead_bright ); } } public void outputCubeInfo() { int i = 0; for (Cube c : model.cubes) { print("Cube " + i + ": " + c.x + "," + c.y + "," + c.z + "\n"); ++i; } print("Edgeheight: " + Cube.EDGE_HEIGHT + "\n"); print("Edgewidth: " + Cube.EDGE_WIDTH + "\n"); print("Channelwidth: " + Cube.CHANNEL_WIDTH + "\n"); } private void initCubeStates() { List neighbors; boolean alive = false; CubeState cube_state; this.cube_states = new ArrayList(); Integer i = 0; for (Cube c : model.cubes) { neighbors = findCubeNeighbors(c, i); alive = true; cube_state = new CubeState(i, alive, neighbors); this.cube_states.add(cube_state); ++i; } } private void randomizeCubeStates() { double prob_range = (1.0 - MIN_ALIVE_PROBABILITY) - (1.0 - MAX_ALIVE_PROBABILITY); double prob = MIN_ALIVE_PROBABILITY + (prob_range * Math.random()); //print("Randomizing cubes! p = " + prob + "\n"); for (CubeState cube_state: this.cube_states) { cube_state.alive = (Math.random() <= prob); } } public List findCubeNeighbors(Cube cube, Integer index) { List neighbors = new LinkedList(); Integer i = 0; for (Cube c : model.cubes) { if(index != i) { if(abs(c.x - cube.x) < (Cube.EDGE_WIDTH * 2) && abs(c.y - cube.y) < (Cube.EDGE_HEIGHT * 2)) { //print("Cube " + i + " is a neighbor of " + index + "\n"); neighbors.add(i); } } i++; } return neighbors; } public boolean shouldLightCube(CubeState cube_state) { // Respect rate parameter. if(time_since_last_run < rateParameter.getValuef()) { any_changes_this_run = true; return cube_state.alive; } else { boolean new_life = cycleOfLife(cube_state); new_lives.add(new_life); return new_life; } } public void applyNewLives() { int index = 0; for(boolean liveliness: new_lives) { CubeState cube_state = this.cube_states.get(index); cube_state.alive = new_lives.get(index); index++; } } public boolean cycleOfLife(CubeState cube_state) { Integer index = cube_state.index; Integer alive_neighbor_count = countLiveNeighbors(cube_state); boolean before_alive = cube_state.alive; boolean after_alive = before_alive; if(cube_state.alive) { if(alive_neighbor_count < 2 || alive_neighbor_count > 3) { after_alive = false; } else { after_alive = true; } } else { if(alive_neighbor_count == 2) { after_alive = true; } else { after_alive = false; } } if(before_alive != after_alive) { any_changes_this_run = true; } return after_alive; } public Integer countLiveNeighbors(CubeState cube_state) { Integer count = 0; CubeState neighbor_cube_state; for(Integer neighbor_index: cube_state.neighbors) { neighbor_cube_state = this.cube_states.get(neighbor_index); if(neighbor_cube_state.alive) { count++; } } return count; } } class L8onAutomata extends SCPattern { // Controls if the points should be randomized even if something changes. Set above 0.5 to randomize cube aliveness. private BasicParameter randomParameter = new BasicParameter("RAND", 0.0); // Controls the rate of life algorithm ticks, in milliseconds private BasicParameter rateParameter = new BasicParameter("RATE", 75.0, 0.0, 1000.0); private final SinLFO zPos = new SinLFO(0, model.zMax, 2500); public final double MIN_ALIVE_PROBABILITY = 0.2; public final double MAX_ALIVE_PROBABILITY = 0.9; class PointState { // Index of cube in glucose.model.cubes public Integer index; // Boolean which describes if cube is alive. public boolean alive; public PointState(Integer index, boolean alive) { this.index = index; this.alive = alive; } } // Contains the state of all cubes by index. private List point_states; // Contains the amount of time since the last cycle of life. private int time_since_last_run; // Boolean describing if life changes were made during the current run. private boolean any_changes_this_run; // Hold the new lives private List new_states; public L8onAutomata(GLucose glucose) { super(glucose); //Print debug info about the cubes. //outputCubeInfo(); initPointStates(); randomizePointStates(); time_since_last_run = 0; any_changes_this_run = false; new_states = new ArrayList(); addParameter(randomParameter); addParameter(rateParameter); addModulator(zPos).trigger(); } private void initPointStates() { boolean alive = false; PointState point_state; this.point_states = new ArrayList(); Integer i = 0; for (LXPoint p : model.points) { alive = true; point_state = new PointState(i, alive); this.point_states.add(point_state); ++i; } } public void run(double deltaMs) { Integer i = 0; PointState point_state; any_changes_this_run = false; new_states.clear(); time_since_last_run += deltaMs; for (LXPoint p : model.points) { point_state = this.point_states.get(i); if(shouldLightPoint(point_state)) { lightLivePoint(p); } else { lightDeadPoint(p); } i++; } boolean should_randomize_anyway = (randomParameter.getValuef() > 0.5); if(should_randomize_anyway || !any_changes_this_run) { randomizePointStates(); } else { applyNewStates(); } if(time_since_last_run >= rateParameter.getValuef()) { time_since_last_run = 0; } } public void lightLivePoint(LXPoint p) { float hv = max(0, lx.getBaseHuef() - abs(p.z - zPos.getValuef())); colors[p.index] = lx.hsb( hv, 90, 80 ); } public void lightDeadPoint(LXPoint p) { colors[p.index] = lx.hsb( lx.getBaseHuef(), 0, 0 ); } public boolean shouldLightPoint(PointState point_state) { // Respect rate parameter. if(time_since_last_run < rateParameter.getValuef()) { any_changes_this_run = true; return point_state.alive; } else { boolean new_state = cycleOfAutomata(point_state); new_states.add(new_state); return new_state; } } public boolean cycleOfAutomata(PointState point_state) { Integer index = point_state.index; Integer alive_neighbor_count = countLiveNeighbors(point_state); boolean before_alive = point_state.alive; boolean after_alive = before_alive; if(point_state.alive) { if(alive_neighbor_count == 1) { after_alive = true; } else { after_alive = false; } } else { if(alive_neighbor_count == 1) { after_alive = true; } else { after_alive = false; } } if(before_alive != after_alive) { any_changes_this_run = true; } return after_alive; } public int countLiveNeighbors(PointState point_state) { Integer index = point_state.index; PointState before_neighbor; PointState after_neighbor; int count = 0; if (index > 0) { before_neighbor = point_states.get(index - 1); if(before_neighbor.alive) { count++; } } if (index < (point_states.size() - 1)) { after_neighbor = point_states.get(index + 1); if(after_neighbor.alive) { count++; } } return count; } private void applyNewStates() { int index = 0; for(boolean new_state: new_states) { PointState point_state = this.point_states.get(index); point_state.alive = new_states.get(index); index++; } } private void randomizePointStates() { double prob_range = (1.0 - MIN_ALIVE_PROBABILITY) - (1.0 - MAX_ALIVE_PROBABILITY); double prob = MIN_ALIVE_PROBABILITY + (prob_range * Math.random()); print("Randomizing points! p = " + prob + "\n"); for (PointState point_state: this.point_states) { point_state.alive = (Math.random() <= prob); } } }