/** * DOUBLE BLACK DIAMOND DOUBLE BLACK DIAMOND * * //\\ //\\ //\\ //\\ * ///\\\ ///\\\ ///\\\ ///\\\ * \\\/// \\\/// \\\/// \\\/// * \\// \\// \\// \\// * * EXPERTS ONLY!! EXPERTS ONLY!! * * This file implements the mapping functions needed to lay out the physical * cubes and the output ports on the panda board. It should only be modified * when physical changes or tuning is being done to the structure. */ class TowerMapping { public final float x, y, z; public final float[][] cubePositions; TowerMapping(float x, float y, float z, float[][] cubePositions) { this.x = x; this.y = y; this.z = z; this.cubePositions = cubePositions; } } public Model buildModel() { // The model is represented as an array of towers. The cubes in the tower // are represenented relatively. Each tower has an x, y, z reference position, // which is typically the base cube's bottom left corner. // // Following that is an array of floats. A 2-d array contains an x-offset // and a z-offset from the reference position. Typically the first cube // will just be {0, 0}. // // A 3-d array contains an x-offset, a z-offset, and a rotation about the // y-axis. // // The cubes automatically increment their y-position by Cube.EDGE_HEIGHT. final float STACKED_RELATIVE = 1; final float STACKED_REL_SPIN = 2; TowerMapping[] mapping = new TowerMapping[] { new TowerMapping(0, 0, 0, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 5, -10, 20}, {STACKED_RELATIVE, 0, -6}, {STACKED_RELATIVE, -5, -2, -20}, }), new TowerMapping(Cube.EDGE_WIDTH + 2, 0, 0, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 0, 5, 10}, {STACKED_RELATIVE, 0, 2, 20}, {STACKED_RELATIVE, 0, 0, 30}, }), // Back Cubes behind DJ platform (in order of increasing x) new TowerMapping(50, 5, BASS_DEPTH, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 2, 0, 20}, {STACKED_RELATIVE, -2, 10}, {STACKED_RELATIVE, -5, 15, -20}, {STACKED_RELATIVE, -2, 13}, }), new TowerMapping(79, 5, BASS_DEPTH, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 2, 0, 20}, {STACKED_RELATIVE, 4, 10}, {STACKED_RELATIVE, 2, 15, -20}, {STACKED_RELATIVE, 0, 13}, }), new TowerMapping(107, 5, BASS_DEPTH, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 4, 0, 20}, {STACKED_RELATIVE, 6, 10}, {STACKED_RELATIVE, 3, 15, -20}, // {STACKED_RELATIVE, 8, 13}, }), new TowerMapping(133, 5, BASS_DEPTH, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, -2, 0, 20}, {STACKED_RELATIVE, 0, 10}, {STACKED_RELATIVE, 2, 15, -20}, // {STACKED_RELATIVE, 4, 13} }), new TowerMapping(165, 5, BASS_DEPTH, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, -1, 20}, {STACKED_RELATIVE, 2, 10}, {STACKED_RELATIVE, -2, 15, -20}, {STACKED_RELATIVE, 3, 13}, }), // front DJ cubes new TowerMapping((TRAILER_WIDTH - BASS_WIDTH)/2, BASS_HEIGHT, 10, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 0, -10, 20}, }), new TowerMapping((TRAILER_WIDTH - BASS_WIDTH)/2 + Cube.EDGE_HEIGHT, BASS_HEIGHT, 10, new float[][] { {STACKED_RELATIVE, 3, 0}, {STACKED_RELATIVE, 2, -10, 20}, }), new TowerMapping((TRAILER_WIDTH - BASS_WIDTH)/2 + 2*Cube.EDGE_HEIGHT + 5, BASS_HEIGHT, 10, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 1, 0, 10}, }), new TowerMapping((TRAILER_WIDTH - BASS_WIDTH)/2 + 3*Cube.EDGE_HEIGHT + 9, BASS_HEIGHT, 10, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, -1, 0}, }), new TowerMapping((TRAILER_WIDTH - BASS_WIDTH)/2 + 4*Cube.EDGE_HEIGHT + 15, BASS_HEIGHT, 10, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, -1, 0}, }), // left dj cubes new TowerMapping((TRAILER_WIDTH - BASS_WIDTH)/2, BASS_HEIGHT, Cube.EDGE_HEIGHT + 2, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 0, 2, 20}, }), new TowerMapping((TRAILER_WIDTH - BASS_WIDTH)/2, BASS_HEIGHT, 2*Cube.EDGE_HEIGHT + 4, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 0, 2, 20}, }), // right dj cubes new TowerMapping((TRAILER_WIDTH - BASS_WIDTH)/2 + 4*Cube.EDGE_HEIGHT + 15, BASS_HEIGHT, Cube.EDGE_HEIGHT + 2, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 0, 2, 20}, }), new TowerMapping((TRAILER_WIDTH - BASS_WIDTH)/2 + 4*Cube.EDGE_HEIGHT + 15, BASS_HEIGHT, 2*Cube.EDGE_HEIGHT + 4, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 0, 2, 20}, }), new TowerMapping(200, 0, 0, new float[][] { {STACKED_RELATIVE, 0, 10}, {STACKED_RELATIVE, 5, 0, 20}, {STACKED_RELATIVE, 0, 4}, {STACKED_RELATIVE, -5, 8, -20}, {STACKED_RELATIVE, 0, 3}, }), new TowerMapping(0, 0, Cube.EDGE_HEIGHT + 10, new float[][] { {STACKED_RELATIVE, 10, 0, 40}, {STACKED_RELATIVE, 3, -2, 20}, {STACKED_RELATIVE, 0, 0, 40}, {STACKED_RELATIVE, 0, 0, 60}, {STACKED_RELATIVE, 0, 0, 40}, }), new TowerMapping(20, 0, 2*Cube.EDGE_HEIGHT + 18, new float[][] { {STACKED_RELATIVE, 0, 0, 40}, {STACKED_RELATIVE, 10, 0, 20}, {STACKED_RELATIVE, 5, 0, 40}, {STACKED_RELATIVE, 10, 0, 60}, {STACKED_RELATIVE, 12, 0, 40}, }), new TowerMapping(210, 0, Cube.EDGE_HEIGHT + 15, new float[][] { {STACKED_RELATIVE, 0, 0, 40}, {STACKED_RELATIVE, 5, 0, 20}, {STACKED_RELATIVE, 8, 0, 40}, {STACKED_RELATIVE, 3, 0, 60}, {STACKED_RELATIVE, 0, 0, 40}, }), new TowerMapping(210, 0, 2*Cube.EDGE_HEIGHT + 25, new float[][] { {STACKED_RELATIVE, 0, 0, 40}, {STACKED_RELATIVE, 5, 0, 20}, {STACKED_RELATIVE, 2, 0, 40}, {STACKED_RELATIVE, 5, 0, 60}, {STACKED_RELATIVE, 0, 0, 40}, }), }; ArrayList towerList = new ArrayList(); ArrayList tower; Cube[] cubes = new Cube[79]; int cubeIndex = 1; float tx, ty, tz, px, pz, ny, dx, dz, ry; for (TowerMapping tm : mapping) { tower = new ArrayList(); px = tx = tm.x; ny = ty = tm.y; pz = tz = tm.z; int ti = 0; for (float[] cp : tm.cubePositions) { float mode = cp[0]; if (mode == STACKED_RELATIVE) { dx = cp[1]; dz = cp[2]; ry = (cp.length >= 4) ? cp[3] : 0; tower.add(cubes[cubeIndex++] = new Cube(px = tx + dx, ny, pz = tz + dz, 0, ry, 0)); ny += Cube.EDGE_HEIGHT; } else if (mode == STACKED_REL_SPIN) { // Same as above but the front left of this cube is actually its back right for wiring // TODO(mcslee): implement this } } towerList.add(new Tower(tower)); } return new Model(towerList, cubes); } public PandaMapping[] buildPandaList() { return new PandaMapping[] { new PandaMapping( "10.200.1.28", new int[][] { { 1, 2, 3, 4 }, // ch1 { 5, 6, 7, 8 }, // ch2 { 9, 10, 11, 12 }, // ch3 { 13, 14, 15, 16 }, // ch4 { 17, 18, 19, 20 }, // ch5 { 21, 22, 23, 24 }, // ch6 { 25, 26, 27, 28 }, // ch7 { 29, 30, 31, 32 }, // ch8 }), new PandaMapping( "10.200.1.29", new int[][] { { 33, 34, 35, 36 }, // ch9 { 37, 38, 39, 40 }, // ch10 { 41, 42, 43, 44 }, // ch11 { 45, 46, 47, 48 }, // ch12 { 49, 50, 51, 52 }, // ch13 { 53, 54, 55, 56 }, // ch14 { 57, 58, 59, 60 }, // ch15 { 61, 62, 63, 64 }, // ch16 }), }; } class PandaMapping { // How many channels are on the panda board public final static int CHANNELS_PER_BOARD = 8; // How many cubes per channel xc_PB is configured for public final static int CUBES_PER_CHANNEL = 4; // How many total pixels on each channel public final static int PIXELS_PER_CHANNEL = Cube.POINTS_PER_CUBE * CUBES_PER_CHANNEL; // How many total pixels on the whole board public final static int PIXELS_PER_BOARD = PIXELS_PER_CHANNEL * CHANNELS_PER_BOARD; final String ip; final int[][] channelList = new int[CHANNELS_PER_BOARD][CUBES_PER_CHANNEL]; PandaMapping(String ip, int[][] rawChannelList) { this.ip = ip; for (int chi = 0; chi < CHANNELS_PER_BOARD; ++chi) { int[] cubes = (chi < rawChannelList.length) ? rawChannelList[chi] : new int[]{}; for (int cui = 0; cui < CUBES_PER_CHANNEL; ++cui) { channelList[chi][cui] = (cui < cubes.length) ? cubes[cui] : 0; } } } }