/** * DOUBLE BLACK DIAMOND DOUBLE BLACK DIAMOND * * //\\ //\\ //\\ //\\ * ///\\\ ///\\\ ///\\\ ///\\\ * \\\/// \\\/// \\\/// \\\/// * \\// \\// \\// \\// * * EXPERTS ONLY!! EXPERTS ONLY!! * * This file implements the mapping functions needed to lay out the physical * cubes and the output ports on the panda board. It should only be modified * when physical changes or tuning is being done to the structure. */ class TowerMapping { public final float x, y, z; public final float[][] cubePositions; TowerMapping(float x, float y, float z, float[][] cubePositions) { this.x = x; this.y = y; this.z = z; this.cubePositions = cubePositions; } } public Model buildModel() { // The model is represented as an array of towers. The cubes in the tower // are represenented relatively. Each tower has an x, y, z reference position, // which is typically the base cube's bottom left corner. // // Following that is an array of floats. A 2-d array contains an x-offset // and a z-offset from the reference position. Typically the first cube // will just be {0, 0}. // // A 3-d array contains an x-offset, a z-offset, and a rotation about the // y-axis. // // The cubes automatically increment their y-position by Cube.EDGE_HEIGHT. final float STACKED_RELATIVE = 1; final float STACKED_REL_SPIN = 2; final float BASS_DEPTH = BassBox.EDGE_DEPTH + 4; TowerMapping[] mapping = new TowerMapping[] { // Front left cubes // new TowerMapping(0, 0, 0, new float[][] { // {STACKED_RELATIVE, 0, 0}, // {STACKED_RELATIVE, 5, -10, 20}, // {STACKED_RELATIVE, 0, -6}, // {STACKED_RELATIVE, -5, -2, -20}, // }), // // new TowerMapping(Cube.EDGE_WIDTH + 2, 0, 0, new float[][] { // {STACKED_RELATIVE, 0, 0}, // {STACKED_RELATIVE, 0, 5, 10}, // {STACKED_RELATIVE, 0, 2, 20}, // {STACKED_RELATIVE, 0, 0, 30}, // }), // Back Cubes behind DJ platform (in order of increasing x) new TowerMapping(50, 5, BASS_DEPTH, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 2, 0, 20}, {STACKED_RELATIVE, -2, 10}, {STACKED_RELATIVE, -5, 15, -20}, {STACKED_RELATIVE, -2, 13}, }), new TowerMapping(79, 5, BASS_DEPTH, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 2, 0, 20}, {STACKED_RELATIVE, 4, 10}, {STACKED_RELATIVE, 2, 15, -20}, {STACKED_RELATIVE, 0, 13}, }), new TowerMapping(107, 5, BASS_DEPTH, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 4, 0, 20}, {STACKED_RELATIVE, 6, 10}, {STACKED_RELATIVE, 3, 15, -20}, // {STACKED_RELATIVE, 8, 13}, }), new TowerMapping(133, 5, BASS_DEPTH, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, -2, 0, 20}, {STACKED_RELATIVE, 0, 10}, {STACKED_RELATIVE, 2, 15, -20}, // {STACKED_RELATIVE, 4, 13} }), new TowerMapping(165, 5, BASS_DEPTH, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, -1, 20}, {STACKED_RELATIVE, 2, 10}, {STACKED_RELATIVE, -2, 15, -20}, {STACKED_RELATIVE, 3, 13}, }), // front DJ cubes new TowerMapping((TRAILER_WIDTH - BassBox.EDGE_WIDTH)/2, BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH, 10, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 0, -10, 20}, }), new TowerMapping((TRAILER_WIDTH - BassBox.EDGE_WIDTH)/2 + Cube.EDGE_HEIGHT, BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH, 10, new float[][] { {STACKED_RELATIVE, 3, 0}, {STACKED_RELATIVE, 2, -10, 20}, }), new TowerMapping((TRAILER_WIDTH - BassBox.EDGE_WIDTH)/2 + 2*Cube.EDGE_HEIGHT + 5, BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH, 10, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 1, 0, 10}, }), new TowerMapping((TRAILER_WIDTH - BassBox.EDGE_WIDTH)/2 + 3*Cube.EDGE_HEIGHT + 9, BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH, 10, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, -1, 0}, }), new TowerMapping((TRAILER_WIDTH - BassBox.EDGE_WIDTH)/2 + 4*Cube.EDGE_HEIGHT + 15, BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH, 10, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, -1, 0}, }), // left dj cubes new TowerMapping((TRAILER_WIDTH - BassBox.EDGE_WIDTH)/2, BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH, Cube.EDGE_HEIGHT + 2, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 0, 2, 20}, }), new TowerMapping((TRAILER_WIDTH - BassBox.EDGE_WIDTH)/2, BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH, 2*Cube.EDGE_HEIGHT + 4, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 0, 2, 20}, }), // right dj cubes new TowerMapping((TRAILER_WIDTH - BassBox.EDGE_WIDTH)/2 + 4*Cube.EDGE_HEIGHT + 15, BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH, Cube.EDGE_HEIGHT + 2, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 0, 2, 20}, }), new TowerMapping((TRAILER_WIDTH - BassBox.EDGE_WIDTH)/2 + 4*Cube.EDGE_HEIGHT + 15, BassBox.EDGE_HEIGHT + BoothFloor.PLEXI_WIDTH, 2*Cube.EDGE_HEIGHT + 4, new float[][] { {STACKED_RELATIVE, 0, 0}, {STACKED_RELATIVE, 0, 2, 20}, }), // new TowerMapping(200, 0, 0, new float[][] { // {STACKED_RELATIVE, 0, 10}, // {STACKED_RELATIVE, 5, 0, 20}, // {STACKED_RELATIVE, 0, 4}, // {STACKED_RELATIVE, -5, 8, -20}, // {STACKED_RELATIVE, 0, 3}, // }), // new TowerMapping(0, 0, Cube.EDGE_HEIGHT + 10, new float[][] { // {STACKED_RELATIVE, 10, 0, 40}, // {STACKED_RELATIVE, 3, -2, 20}, // {STACKED_RELATIVE, 0, 0, 40}, // {STACKED_RELATIVE, 0, 0, 60}, // {STACKED_RELATIVE, 0, 0, 40}, // }), new TowerMapping(20, 0, 2*Cube.EDGE_HEIGHT + 18, new float[][] { {STACKED_RELATIVE, 0, 0, 40}, {STACKED_RELATIVE, 10, 0, 20}, {STACKED_RELATIVE, 5, 0, 40}, {STACKED_RELATIVE, 10, 0, 60}, {STACKED_RELATIVE, 12, 0, 40}, }), // new TowerMapping(210, 0, Cube.EDGE_HEIGHT + 15, new float[][] { // {STACKED_RELATIVE, 0, 0, 40}, // {STACKED_RELATIVE, 5, 0, 20}, // {STACKED_RELATIVE, 8, 0, 40}, // {STACKED_RELATIVE, 3, 0, 60}, // {STACKED_RELATIVE, 0, 0, 40}, // }), new TowerMapping(210, 0, 2*Cube.EDGE_HEIGHT + 25, new float[][] { {STACKED_RELATIVE, 0, 0, 40}, {STACKED_RELATIVE, 5, 0, 20}, {STACKED_RELATIVE, 2, 0, 40}, {STACKED_RELATIVE, 5, 0, 60}, {STACKED_RELATIVE, 0, 0, 40}, }), }; ArrayList towerList = new ArrayList(); ArrayList tower; Cube[] cubes = new Cube[79]; int cubeIndex = 1; float tx, ty, tz, px, pz, ny, dx, dz, ry; for (TowerMapping tm : mapping) { tower = new ArrayList(); px = tx = tm.x; ny = ty = tm.y; pz = tz = tm.z; int ti = 0; for (float[] cp : tm.cubePositions) { float mode = cp[0]; if (mode == STACKED_RELATIVE) { dx = cp[1]; dz = cp[2]; ry = (cp.length >= 4) ? cp[3] : 0; tower.add(cubes[cubeIndex++] = new Cube(px = tx + dx, ny, pz = tz + dz, 0, ry, 0)); ny += Cube.EDGE_HEIGHT; } else if (mode == STACKED_REL_SPIN) { // Same as above but the front left of this cube is actually its back right for wiring // TODO(mcslee): implement this } } towerList.add(new Tower(tower)); } BassBox bassBox = new BassBox(56, 0, 2); List speakers = new ArrayList(); speakers.add(new Speaker(-12, 6, 0, 15)); speakers.add(new Speaker(TRAILER_WIDTH - Speaker.EDGE_WIDTH, 6, 6, -15)); return new Model(towerList, cubes, bassBox, speakers); } public PandaMapping[] buildPandaList() { return new PandaMapping[] { new PandaMapping( "10.200.1.28", new ChannelMapping[] { new ChannelMapping(ChannelMapping.MODE_BASS), new ChannelMapping(ChannelMapping.MODE_FLOOR), new ChannelMapping(ChannelMapping.MODE_SPEAKER, 0), new ChannelMapping(ChannelMapping.MODE_SPEAKER, 1), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 1, 2, 3, 4 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 5, 6, 7, 8 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 9, 10, 11, 12 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 13, 14, 15, 16 }), }), new PandaMapping( "10.200.1.29", new ChannelMapping[] { new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 17, 18, 19, 20 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 21, 22, 23, 24 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 25, 26, 27, 28 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 29, 30, 31, 32 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 33, 34, 35, 36 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 37, 38, 39, 40 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 41, 42, 43, 44 }), new ChannelMapping(ChannelMapping.MODE_CUBES, new int[] { 45, 46, 47, 48 }), }), }; } /** * Each panda board has an IP address and a fixed number of channels. The channels * each have a fixed number of pixels on them. Whether or not that many physical * pixels are connected to the channel, we still send it that much data. */ class PandaMapping { // How many channels are on the panda board public final static int CHANNELS_PER_BOARD = 8; // How many total pixels on the whole board public final static int PIXELS_PER_BOARD = ChannelMapping.PIXELS_PER_CHANNEL * CHANNELS_PER_BOARD; final String ip; final ChannelMapping[] channelList = new ChannelMapping[CHANNELS_PER_BOARD]; PandaMapping(String ip, ChannelMapping[] rawChannelList) { this.ip = ip; // Ensure our array is the right length and has all valid items in it for (int i = 0; i < channelList.length; ++i) { channelList[i] = (i < rawChannelList.length) ? rawChannelList[i] : new ChannelMapping(); if (channelList[i] == null) { channelList[i] = new ChannelMapping(); } } } } /** * Each channel on a pandaboard can be mapped in a number of modes. The typial is * to a series of connected cubes, but we also have special mappings for the bass box, * the speaker enclosures, and the DJ booth floor. * * This class is just the mapping meta-data. It sanitizes the input to make sure * that the cubes and objects being referenced actually exist in the model. * * The logic for how to encode the pixels is contained in the PandaDriver. */ class ChannelMapping { // How many cubes per channel xc_PB is configured for public final static int CUBES_PER_CHANNEL = 4; // How many total pixels on each channel public final static int PIXELS_PER_CHANNEL = Cube.POINTS_PER_CUBE * CUBES_PER_CHANNEL; public static final int MODE_NULL = 0; public static final int MODE_CUBES = 1; public static final int MODE_BASS = 2; public static final int MODE_SPEAKER = 3; public static final int MODE_FLOOR = 4; public static final int MODE_INVALID = 5; public static final int NO_OBJECT = -1; final int mode; final int[] objectIndices = new int[CUBES_PER_CHANNEL]; ChannelMapping() { this(MODE_NULL); } ChannelMapping(int mode) { this(mode, new int[]{}); } ChannelMapping(int mode, int rawObjectIndex) { this(mode, new int[]{ rawObjectIndex }); } ChannelMapping(int mode, int[] rawObjectIndices) { if (mode < 0 || mode >= MODE_INVALID) { throw new RuntimeException("Invalid channel mapping mode: " + mode); } if (mode == MODE_SPEAKER) { if (rawObjectIndices.length != 1) { throw new RuntimeException("Speaker channel mapping mode must specify one speaker index"); } int speakerIndex = rawObjectIndices[0]; if (speakerIndex < 0 || speakerIndex >= glucose.model.speakers.size()) { throw new RuntimeException("Invalid speaker channel mapping: " + speakerIndex); } } else if ((mode == MODE_FLOOR) || (mode == MODE_BASS) || (mode == MODE_NULL)) { if (rawObjectIndices.length > 0) { throw new RuntimeException("Bass/floor/null mappings cannot specify object indices"); } } else if (mode == MODE_CUBES) { for (int rawCubeIndex : rawObjectIndices) { if (glucose.model.getCubeByRawIndex(rawCubeIndex) == null) { throw new RuntimeException("Non-existing cube specified in cube mapping: " + rawCubeIndex); } } } this.mode = mode; for (int i = 0; i < objectIndices.length; ++i) { objectIndices[i] = (i < rawObjectIndices.length) ? rawObjectIndices[i] : NO_OBJECT; } } }