import netP5.*; import oscP5.*; /** * DOUBLE BLACK DIAMOND DOUBLE BLACK DIAMOND * * //\\ //\\ //\\ //\\ * ///\\\ ///\\\ ///\\\ ///\\\ * \\\/// \\\/// \\\/// \\\/// * \\// \\// \\// \\// * * EXPERTS ONLY!! EXPERTS ONLY!! * * This class implements the output function to the Panda Boards. It * will be moved into GLucose once stabilized. */ public static class PandaDriver { interface Listener { public void onToggle(boolean enabled); } private Listener listener = null; // IP address public final String ip; public PandaMapping pm; private final static int PORT = 779; private final DatagramSocket socket; // Address to send to private final NetAddress address; // Whether board output is enabled private boolean enabled = false; // Frame count for Grizzlies private int frameNum = 1; // OSC message private final OscMessage message; // List of point indices that get sent to this board private final int[] points; // Packet data private final byte[] packet = new byte[4*280]; // magic number, our UDP packet size private static final int NO_POINT = -1; private Model _model; //////////////////////////////////////////////////////////////// // // READ THIS RIGHT NOW BEFORE YOU MODIFY THE BELOW!!!!!!!!!!!!! // READ THIS RIGHT NOW BEFORE YOU MODIFY THE BELOW!!!!!!!!!!!!! // READ THIS RIGHT NOW BEFORE YOU MODIFY THE BELOW!!!!!!!!!!!!! // // The mappings below indicate the physical order of strips // connected to a pandaboard channel. The strip numbers are a // reflection of how the model is built. // // For ANYTHING in the model which is a rectangular prism, // which means Cubes, the BassBox, and each Speaker, the // strips are numbered incrementally by face. The first // face is always the FRONT, which you are looking at. // The next face is the RIGHT, then the BACK, then the LEFT. // // For every face, the strips are ordered numerically moving // clockwise from the the TOP LEFT. // // So, for a cube: // // Strip 0: front face, top strip, left to right // Strip 1: front face, right strip, top to bottom // Strip 2: front face, bottom strip, right to left // Strip 3: front face, left strip, bottom to top // // Strip 4: right face, top strip, left to right // ... and so on // Strip 14: left face, bottom strip, right to left // Strip 15: left face, left strip, bottom to top // //////////////////////////////////////////////////////////////// private final static int FORWARD = -1; private final static int BACKWARD = -2; /** * These constant arrays indicate the order in which the strips of a cube * are wired. There are four different options, depending on which bottom * corner of the cube the data wire comes in. */ private final static int[][] CUBE_STRIP_ORDERINGS = new int[][] { // { 2, 1, 0, 3, 13, 12, 15, 14, 4, 7, 6, 5, 11, 10, 9, 8 }, // FRONT_LEFT // { 6, 5, 4, 7, 1, 0, 3, 2, 8, 11, 10, 9, 15, 14, 13, 12 }, // FRONT_RIGHT // { 14, 13, 12, 15, 9, 8, 11, 10, 0, 3, 2, 1, 7, 6, 5, 4 }, // REAR_LEFT // { 10, 9, 8, 11, 5, 4, 7, 6, 12, 15, 14, 13, 3, 2, 1, 0 }, // REAR_RIGHT { 2, 1, 0, 3, 13, 12, 15, 14, 4, 7, 6, 5, 11, 10, 9, 8 }, // FRONT_LEFT { 6, 5, 4, 7, 1, 0, 3, 2, 8, 11, 10, 9, 15, 14, 13, 12 }, // FRONT_RIGHT { 14, 13, 12, 15, 9, 8, 11, 10, 0, 3, 2, 1, 7, 6, 5, 4 }, // REAR_LEFT { 9, 8, 11, 5, 4, 7, 6, 10, 14, 2, 1, 0, 3, 13, 12, 15 }, // REAR_RIGHT }; private final static int[][] BASS_STRIP_ORDERING = { // front face, counterclockwise from bottom front left {2, BACKWARD /* if this strip has extra pixels, you can add them here */ /*, 4 */ }, {1, BACKWARD /* if this strip is short some pixels, substract them here */ /*, -3 */ }, {0, BACKWARD }, {3, BACKWARD }, // left face, counterclockwise from bottom front left {13, BACKWARD }, {12, BACKWARD }, {15, BACKWARD }, {14, BACKWARD }, // back face, counterclockwise from bottom rear left {9, BACKWARD }, {8, BACKWARD }, {11, BACKWARD }, {10, BACKWARD }, // right face, counterclockwise from bottom rear right {5, BACKWARD }, {4, BACKWARD }, {7, BACKWARD }, {6, BACKWARD }, }; private final static int[][] STRUT_STRIP_ORDERING = { {6, BACKWARD}, {5, FORWARD}, {4, BACKWARD}, {3, FORWARD}, {2, BACKWARD}, {1, FORWARD}, {0, BACKWARD}, {7, FORWARD}, }; private final static int[][] FLOOR_STRIP_ORDERING = { {0, FORWARD}, {1, FORWARD}, {2, FORWARD}, {3, BACKWARD}, }; // The speakers are currently configured to be wired the same // as cubes with Wiring.FRONT_LEFT. If this needs to be changed, // remove this null assignment and change the below to have mappings // for the LEFT and RIGHT speaker private final static int[][][] SPEAKER_STRIP_ORDERING = { // Left speaker { // Front face, counter-clockwise from bottom left {2, BACKWARD }, {1, BACKWARD }, {0, BACKWARD }, {3, BACKWARD }, }, // Right speaker { // Front face, counter-clockwise from bottom left {2, BACKWARD }, {1, BACKWARD }, {0, BACKWARD }, {3, BACKWARD }, } }; public PandaDriver(String ip) { this.ip = ip; // Initialize our OSC output stuff address = new NetAddress(ip, 779); message = new OscMessage("/shady/pointbuffer"); try { socket = new DatagramSocket(); } catch (Exception x) { throw new RuntimeException(x); } // Build the array of points, initialize all to nothing points = new int[PandaMapping.PIXELS_PER_BOARD]; for (int i = 0; i < points.length; ++i) { points[i] = NO_POINT; } } public PandaDriver(String ip, Model model, PandaMapping _pm) { this(ip); pm = _pm; _model = model; // Ok, we are initialized, time to build the array if points in order to // send out. We start at the head of our point buffer, and work our way // down. This is the order in which points will be sent down the wire. int ci = -1; // Iterate through all our channelq s for (ChannelMapping channel : pm.channelList) { ++ci; int pi = ci * ChannelMapping.PIXELS_PER_CHANNEL; switch (channel.mode) { case ChannelMapping.MODE_CUBES: // We have a list of cubes per channel for (int rawCubeIndex : channel.objectIndices) { if (rawCubeIndex < 0) { // No cube here, skip ahead in the buffer pi += Cube.POINTS_PER_CUBE; } else { // The cube exists, check which way it is wired to // figure out the order of strips. Cube cube = model.getCubeByRawIndex(rawCubeIndex); int stripOrderIndex = 0; switch (cube.wiring) { case FRONT_LEFT: stripOrderIndex = 0; break; case FRONT_RIGHT: stripOrderIndex = 1; break; case REAR_LEFT: stripOrderIndex = 2; break; case REAR_RIGHT: stripOrderIndex = 3; break; } // TODO(mcslee): clean up, ordering always consistent now stripOrderIndex = 2; // Iterate through all the strips on the cube and add the points for (int stripIndex : CUBE_STRIP_ORDERINGS[stripOrderIndex]) { // We go backwards here... in the model strips go clockwise, but // the physical wires are run counter-clockwise pi = mapStrip(cube.strips.get(stripIndex), BACKWARD, points, pi); } } } break; case ChannelMapping.MODE_BASS: for (int[] config : BASS_STRIP_ORDERING) { pi = mapStrip(model.bassBox.strips.get(config[0]), config[1], points, pi); if (config.length >= 3) pi += config[2]; } break; case ChannelMapping.MODE_STRUTS_AND_FLOOR: for (int[] config : STRUT_STRIP_ORDERING) { pi = mapStrip(model.bassBox.struts.get(config[0]), config[1], points, pi); if (config.length >= 3) pi += config[2]; } for (int[] config : FLOOR_STRIP_ORDERING) { pi = mapStrip(model.boothFloor.strips.get(config[0]), config[1], points, pi); if (config.length >= 3) pi += config[2]; } break; case ChannelMapping.MODE_SPEAKER: int [][] speakerStripOrdering; if (SPEAKER_STRIP_ORDERING == null) { // Copy the cube strip ordering int[] frontLeftCubeWiring = CUBE_STRIP_ORDERINGS[0]; speakerStripOrdering = new int[frontLeftCubeWiring.length][]; for (int i = 0; i < frontLeftCubeWiring.length; ++i) { speakerStripOrdering[i] = new int[] { frontLeftCubeWiring[0], BACKWARD }; } } else { speakerStripOrdering = SPEAKER_STRIP_ORDERING[channel.objectIndices[0]]; } for (int[] config : speakerStripOrdering) { Speaker speaker = model.speakers.get(channel.objectIndices[0]); pi = mapStrip(speaker.strips.get(config[0]), config[1], points, pi); if (config.length >= 3) pi += config[2]; } break; case ChannelMapping.MODE_NULL: // No problem, nothing on this channel! break; default: throw new RuntimeException("Invalid/unhandled channel mapping mode: " + channel.mode); } } } private int mapStrip(Strip s, int direction, int[] points, int pi) { return mapStrip(s, direction, points, pi, s.points.size()); } private int mapStrip(Strip s, int direction, int[] points, int pi, int len) { if (direction == FORWARD) { int i = 0; for (LXPoint p : s.points) { points[pi++] = p.index; if (++i >= len) { break; } } } else if (direction == BACKWARD) { for (int i = len-1; i >= 0; --i) { points[pi++] = s.points.get(i).index; } } else { throw new RuntimeException("Unidentified strip mapping direction: " + direction); } return pi; } public PandaDriver setListener(Listener listener) { this.listener = listener; return this; } public void setEnabled(boolean enabled) { if (this.enabled != enabled) { this.enabled = enabled; println("PandaBoard/" + ip + ": " + (enabled ? "ON" : "OFF")); if (listener != null) { listener.onToggle(enabled); } } } public boolean isEnabled() { return this.enabled; } public void disable() { setEnabled(false); } public void enable() { setEnabled(true); } public void toggle() { setEnabled(!enabled); } private final int[] GRIZZLY_STRIP_ORDERING = new int[] { 9, 8, 11, 5, 4, 7, 6, 10, 14, 2, 1, 0, 3, 13, 12, 15 }; public final void send(int[] colors) { if (!enabled) { return; } frameNum++; int len = 0; int packetNum = 0; for (ChannelMapping channel : pm.channelList) { for (int rawCubeIndex : channel.objectIndices) { if (rawCubeIndex > 0) { Cube cube = _model.getCubeByRawIndex(rawCubeIndex); // TODO(mcslee): clean this up, precompute paths for (int stripIndex : GRIZZLY_STRIP_ORDERING) { Strip strip = cube.strips.get(stripIndex); int stripLen = ((stripIndex == 9) || (stripIndex == 16)) ? 15 : 16; for (int i = stripLen-1; i >= 0; --i) { int c = colors[strip.points.get(i).index]; byte r = (byte) ((c >> 16) & 0xFF); byte g = (byte) ((c >> 8) & 0xFF); byte b = (byte) ((c) & 0xFF); packet[len++] = (byte) 0; // alpha channel, unused but makes for 4-byte alignment packet[len++] = (byte) r; packet[len++] = (byte) g; packet[len++] = (byte) b; } } // for (LXPoint p : cube.points) { // int c = (p.index < 0) ? 0 : colors[p.index]; // byte r = (byte) ((c >> 16) & 0xFF); // byte g = (byte) ((c >> 8) & 0xFF); // byte b = (byte) ((c) & 0xFF); // packet[len++] = (byte) 0; // alpha channel, unused but makes for 4-byte alignment // packet[len++] = (byte) r; // packet[len++] = (byte) g; // packet[len++] = (byte) b; // } } } // println("Packet number: " + packetNum); sendPacket(frameNum, packetNum++); len = 0; } // for (int index : points) { // int c = (index < 0) ? 0 : colors[index]; // byte r = (byte) ((c >> 16) & 0xFF); // byte g = (byte) ((c >> 8) & 0xFF); // byte b = (byte) ((c) & 0xFF); // packet[len++] = 0; // alpha channel, unused but makes for 4-byte alignment // packet[len++] = r; // packet[len++] = g; // packet[len++] = b; // // Flush once packet is full buffer size // if (len >= packet.length) { // sendPacket(packetNum++); // len = 0; // } // } // // Flush any remaining data // if (len > 0) { // sendPacket(packetNum++); // } } private void sendPacket(int frameNum, int packetNum) { // println("Sending frame #" + frameNum + ", channel # " + packetNum); message.clearArguments(); message.add(frameNum); message.add(0xDEADBEEF); message.add(packetNum); message.add(0xFEEDBEEF); message.add(packet.length); message.add(packet); message.add(0xBEFFFFEB); try { // OscP5.flush(message, address); // new DatagramSocket every time, no thanks byte[] bytes = message.getBytes(); DatagramPacket packet = new DatagramPacket(bytes, bytes.length, address.inetaddress(), PORT); socket.send(packet); } catch (Exception x) { x.printStackTrace(); } } }