import netP5.*; import oscP5.*; //import hypermedia.net.*; /** * DOUBLE BLACK DIAMOND DOUBLE BLACK DIAMOND * * //\\ //\\ //\\ //\\ * ///\\\ ///\\\ ///\\\ ///\\\ * \\\/// \\\/// \\\/// \\\/// * \\// \\// \\// \\// * * EXPERTS ONLY!! EXPERTS ONLY!! * * This class implements the output function to the Panda Boards. It * will be moved into GLucose once stabilized. */ public static class PandaDriver extends Thread{ int lastSeen; void start(){super.start();} void run(){ while(true){ if(queue.size()>0) { for(int i=0; i queue; public PandaDriver(String ip, Model model, PandaMapping pm) { this(ip); queue = new ArrayList(); // Ok, we are initialized, time to build the array if points in order to // send out. We start at the head of our point buffer, and work our way // down. This is the order in which points will be sent down the wire. int ci = -1; // Iterate through all our channels for (ChannelMapping channel : pm.channelList) { ++ci; int pi = ci * ChannelMapping.PIXELS_PER_CHANNEL; switch (channel.mode) { case ChannelMapping.MODE_CUBES: // We have a list of cubes per channel for (int rawCubeIndex : channel.objectIndices) { if (rawCubeIndex < 0) { // No cube here, skip ahead in the buffer pi += Cube.POINTS_PER_CUBE; } else { // The cube exists, check which way it is wired to // figure out the order of strips. Cube cube = model.getCubeByRawIndex(rawCubeIndex); int stripOrderIndex = 0; switch (cube.wiring) { case FRONT_LEFT: stripOrderIndex = 0; break; case FRONT_RIGHT: stripOrderIndex = 1; break; case REAR_LEFT: stripOrderIndex = 2; break; case REAR_RIGHT: stripOrderIndex = 3; break; } // Iterate through all the strips on the cube and add the points for (int stripIndex : CUBE_STRIP_ORDERINGS[stripOrderIndex]) { // We go backwards here... in the model strips go clockwise, but // the physical wires are run counter-clockwise pi = mapStrip(cube.strips.get(stripIndex), BACKWARD, points, pi); } } } break; case ChannelMapping.MODE_BASS: for (int[] config : BASS_STRIP_ORDERING) { pi = mapStrip(model.bassBox.strips.get(config[0]), config[1], points, pi); if (config.length >= 3) pi += config[2]; } break; case ChannelMapping.MODE_STRUTS_AND_FLOOR: for (int[] config : STRUT_STRIP_ORDERING) { pi = mapStrip(model.bassBox.struts.get(config[0]), config[1], points, pi); if (config.length >= 3) pi += config[2]; } for (int[] config : FLOOR_STRIP_ORDERING) { pi = mapStrip(model.boothFloor.strips.get(config[0]), config[1], points, pi); if (config.length >= 3) pi += config[2]; } break; case ChannelMapping.MODE_SPEAKER: int [][] speakerStripOrdering; if (SPEAKER_STRIP_ORDERING == null) { // Copy the cube strip ordering int[] frontLeftCubeWiring = CUBE_STRIP_ORDERINGS[0]; speakerStripOrdering = new int[frontLeftCubeWiring.length][]; for (int i = 0; i < frontLeftCubeWiring.length; ++i) { speakerStripOrdering[i] = new int[] { frontLeftCubeWiring[0], BACKWARD }; } } else { speakerStripOrdering = SPEAKER_STRIP_ORDERING[channel.objectIndices[0]]; } for (int[] config : speakerStripOrdering) { Speaker speaker = model.speakers.get(channel.objectIndices[0]); pi = mapStrip(speaker.strips.get(config[0]), config[1], points, pi); if (config.length >= 3) pi += config[2]; } break; case ChannelMapping.MODE_NULL: // No problem, nothing on this channel! break; default: throw new RuntimeException("Invalid/unhandled channel mapping mode: " + channel.mode); } } } private int mapStrip(Strip s, int direction, int[] points, int pi) { if (direction == FORWARD) { for (Point p : s.points) { points[pi++] = p.index; } } else if (direction == BACKWARD) { for (int i = s.points.size()-1; i >= 0; --i) { points[pi++] = s.points.get(i).index; } } else { throw new RuntimeException("Unidentified strip mapping direction: " + direction); } return pi; } public void disable() { if (enabled) { enabled = false; println("PandaBoard/" + ip + ": OFF"); } } public void enable() { if (!enabled) { enabled = true; println("PandaBoard/" + ip + ": ON"); } } public void toggle() { enabled = !enabled; println("PandaBoard/" + ip + ": " + (enabled ? "ON" : "OFF")); } public final void send(int[] colors) { queue.add(colors); } public final void sendNow(int[] colors) { if (!enabled || colors==null) { return; } int len = 0; int packetNum = 0; if(points==null) { return; } for (int index: points) { int c = 0; if(index>0) { c= colors[index]; } byte r = (byte) ((c >> 16) & 0xFF); byte g = (byte) ((c >> 8) & 0xFF); byte b = (byte) ((c) & 0xFF); packet[len++] = 0; // alpha channel, unused but makes for 4-byte alignment packet[len++] = r; packet[len++] = g; packet[len++] = b; // Flush once packet is full buffer size if (len >= packet.length) { sendPacket(packetNum++); len = 0; } } // Flush any remaining data if (len > 0) { sendPacket(packetNum++); } } private void sendPacket(int packetNum) { message.clearArguments(); message.add(packetNum); message.add(packet.length); message.add(packet); try { //udp.send(packet, "10.200.1.29", 9001); OscP5.flush(message, address); } catch (Exception x) { x.printStackTrace(); } } }