X-Git-Url: https://git.piment-noir.org/?p=SugarCubes.git;a=blobdiff_plain;f=TestPatterns.pde;h=728683ec45dea70eec6ee5e03f4f4f3635449514;hp=82aeea4e160daea4938dc249e307935a2120337a;hb=7d60f6f6ea82fd5c9794524ce11d40e7d6c00bf7;hpb=c39f7a0462dfcf7f5ba9b1f6e181e990e4490969 diff --git a/TestPatterns.pde b/TestPatterns.pde index 82aeea4..728683e 100644 --- a/TestPatterns.pde +++ b/TestPatterns.pde @@ -1,61 +1,407 @@ -class TestHuePattern extends SCPattern { - public TestHuePattern(GLucose glucose) { - super(glucose); +class BlankPattern extends SCPattern { + BlankPattern(LX lx) { + super(lx); } - public void run(int deltaMs) { + + public void run(double deltaMs) { + setColors(#000000); + } +} + +abstract class TestPattern extends SCPattern { + public TestPattern(LX lx) { + super(lx); + setEligible(false); + } +} + +class TestStripPattern extends TestPattern { + + SinLFO d = new SinLFO(4, 40, 4000); + + public TestStripPattern(LX lx) { + super(lx); + addModulator(d).trigger(); + } + + public void run(double deltaMs) { + for (Strip s : model.strips) { + for (LXPoint p : s.points) { + colors[p.index] = lx.hsb( + lx.getBaseHuef(), + 100, + max(0, 100 - d.getValuef()*dist(p.x, p.y, s.cx, s.cy)) + ); + } + } + } +} + +/** + * Simplest demonstration of using the rotating master hue. + * All pixels are full-on the same color. + */ +class TestHuePattern extends TestPattern { + public TestHuePattern(LX lx) { + super(lx); + } + + public void run(double deltaMs) { + // Access the core master hue via this method call + float hv = lx.getBaseHuef(); for (int i = 0; i < colors.length; ++i) { - colors[i] = color(lx.getBaseHuef(), 100, 100); + colors[i] = lx.hsb(hv, 100, 100); } } } -class TestXPattern extends SCPattern { - private SinLFO xPos = new SinLFO(0, model.xMax, 4000); - public TestXPattern(GLucose glucose) { - super(glucose); +/** + * Test of a wave moving across the X axis. + */ +class TestXPattern extends TestPattern { + private final SinLFO xPos = new SinLFO(0, model.xMax, 4000); + public TestXPattern(LX lx) { + super(lx); addModulator(xPos).trigger(); } - public void run(int deltaMs) { - for (Point p : model.points) { - colors[p.index] = color( - lx.getBaseHuef(), - 100, - max(0, 100 - abs(p.fx - xPos.getValuef())) - ); + public void run(double deltaMs) { + float hv = lx.getBaseHuef(); + for (LXPoint p : model.points) { + // This is a common technique for modulating brightness. + // You can use abs() to determine the distance between two + // values. The further away this point is from an exact + // point, the more we decrease its brightness + float bv = max(0, 100 - abs(p.x - xPos.getValuef())); + colors[p.index] = lx.hsb(hv, 100, bv); } } } -class TestYPattern extends SCPattern { - private SinLFO yPos = new SinLFO(0, model.yMax, 4000); - public TestYPattern(GLucose glucose) { - super(glucose); +/** + * Test of a wave on the Y axis. + */ +class TestYPattern extends TestPattern { + private final SinLFO yPos = new SinLFO(0, model.yMax, 4000); + public TestYPattern(LX lx) { + super(lx); addModulator(yPos).trigger(); } - public void run(int deltaMs) { - for (Point p : model.points) { - colors[p.index] = color( - lx.getBaseHuef(), - 100, - max(0, 100 - abs(p.fy - yPos.getValuef())) - ); + public void run(double deltaMs) { + float hv = lx.getBaseHuef(); + for (LXPoint p : model.points) { + float bv = max(0, 100 - abs(p.y - yPos.getValuef())); + colors[p.index] = lx.hsb(hv, 100, bv); } } } -class TestZPattern extends SCPattern { - private SinLFO zPos = new SinLFO(0, model.zMax, 4000); - public TestZPattern(GLucose glucose) { - super(glucose); +/** + * Test of a wave on the Z axis. + */ +class TestZPattern extends TestPattern { + private final SinLFO zPos = new SinLFO(0, model.zMax, 4000); + public TestZPattern(LX lx) { + super(lx); addModulator(zPos).trigger(); } - public void run(int deltaMs) { - for (Point p : model.points) { - colors[p.index] = color( - lx.getBaseHuef(), + public void run(double deltaMs) { + float hv = lx.getBaseHuef(); + for (LXPoint p : model.points) { + float bv = max(0, 100 - abs(p.z - zPos.getValuef())); + colors[p.index] = lx.hsb(hv, 100, bv); + } + } +} + +/** + * This shows how to iterate over towers, enumerated in the model. + */ +class TestTowerPattern extends TestPattern { + private final SawLFO towerIndex = new SawLFO(0, model.towers.size(), 1000*model.towers.size()); + + public TestTowerPattern(LX lx) { + super(lx); + addModulator(towerIndex).trigger(); + } + + public void run(double deltaMs) { + int ti = 0; + for (Tower t : model.towers) { + for (LXPoint p : t.points) { + colors[p.index] = lx.hsb( + lx.getBaseHuef(), + 100, + max(0, 100 - 80*LXUtils.wrapdistf(ti, towerIndex.getValuef(), model.towers.size())) + ); + } + ++ti; + } + } + +} + +/** + * This is a demonstration of how to use the projection library. A projection + * creates a mutation of the coordinates of all the points in the model, creating + * virtual x,y,z coordinates. In effect, this is like virtually rotating the entire + * art car. However, since in reality the car does not move, the result is that + * it appears that the object we are drawing on the car is actually moving. + * + * Keep in mind that what we are creating a projection of is the view coordinates. + * Depending on your intuition, some operations may feel backwards. For instance, + * if you translate the view to the right, it will make it seem that the object + * you are drawing has moved to the left. If you scale the view up 2x, objects + * drawn with the same absolute values will seem to be half the size. + * + * If this feels counterintuitive at first, don't worry. Just remember that you + * are moving the pixels, not the structure. We're dealing with a finite set + * of sparse, non-uniformly spaced pixels. Mutating the structure would move + * things to a space where there are no pixels in 99% of the cases. + */ +class TestProjectionPattern extends TestPattern { + + private final LXProjection projection; + private final SawLFO angle = new SawLFO(0, TWO_PI, 9000); + private final SinLFO yPos = new SinLFO(-20, 40, 5000); + + public TestProjectionPattern(LX lx) { + super(lx); + projection = new LXProjection(model); + addModulator(angle).trigger(); + addModulator(yPos).trigger(); + } + + public void run(double deltaMs) { + // For the same reasons described above, it may logically feel to you that + // some of these operations are in reverse order. Again, just keep in mind that + // the car itself is what's moving, not the object + projection.reset() + + // Translate so the center of the car is the origin, offset by yPos + .translateCenter(0, yPos.getValuef(), 0) + + // Rotate around the origin (now the center of the car) about an X-vector + .rotate(angle.getValuef(), 1, 0, 0) + + // Scale up the Y axis (objects will look smaller in that access) + .scale(1, 1.5, 1); + + float hv = lx.getBaseHuef(); + for (LXVector c : projection) { + float d = sqrt(c.x*c.x + c.y*c.y + c.z*c.z); // distance from origin + // d = abs(d-60) + max(0, abs(c.z) - 20); // life saver / ring thing + d = max(0, abs(c.y) - 10 + .1*abs(c.z) + .02*abs(c.x)); // plane / spear thing + colors[c.index] = lx.hsb( + (hv + .6*abs(c.x) + abs(c.z)) % 360, 100, - max(0, 100 - abs(p.fz - zPos.getValuef())) - ); + constrain(140 - 40*d, 0, 100) + ); } + } +} + +class TestCubePattern extends TestPattern { + + private SawLFO index = new SawLFO(0, Cube.POINTS_PER_CUBE, Cube.POINTS_PER_CUBE*60); + + TestCubePattern(LX lx) { + super(lx); + addModulator(index).start(); } + + public void run(double deltaMs) { + for (Cube c : model.cubes) { + int i = 0; + for (LXPoint p : c.points) { + colors[p.index] = lx.hsb( + lx.getBaseHuef(), + 100, + max(0, 100 - 80.*abs(i - index.getValuef())) + ); + ++i; + } + } + } +} + +class MappingTool extends TestPattern { + + private int cubeIndex = 0; + private int stripIndex = 0; + private int channelIndex = 0; + + public final int MAPPING_MODE_ALL = 0; + public final int MAPPING_MODE_CHANNEL = 1; + public final int MAPPING_MODE_SINGLE_CUBE = 2; + public int mappingMode = MAPPING_MODE_ALL; + + public final int CUBE_MODE_ALL = 0; + public final int CUBE_MODE_SINGLE_STRIP = 1; + public final int CUBE_MODE_STRIP_PATTERN = 2; + public int cubeMode = CUBE_MODE_ALL; + + public boolean channelModeRed = true; + public boolean channelModeGreen = false; + public boolean channelModeBlue = false; + + private final int numChannels; + + MappingTool(LX lx) { + super(lx); + // TODO(mcslee): port channels to grizzly + numChannels = 1; + setChannel(); + } + + public int numChannels() { + return numChannels; + } + + private void setChannel() { + // TODO(mcslee): port to grizzly + } + + private int indexOfCubeInChannel(Cube c) { + // TODO(mcslee): port to grizzly + return -1; + } + + private void printInfo() { + println("Cube:" + cubeIndex + " Strip:" + (stripIndex+1)); + } + + public void cube(int delta) { + int len = model.cubes.size(); + cubeIndex = (len + cubeIndex + delta) % len; + printInfo(); + } + + public void strip(int delta) { + int len = Cube.STRIPS_PER_CUBE; + stripIndex = (len + stripIndex + delta) % len; + printInfo(); + } + + public void run(double deltaMs) { + color off = #000000; + color c = off; + color r = #FF0000; + color g = #00FF00; + color b = #0000FF; + if (channelModeRed) c |= r; + if (channelModeGreen) c |= g; + if (channelModeBlue) c |= b; + + int ci = 0; + for (Cube cube : model.cubes) { + boolean cubeOn = false; + int indexOfCubeInChannel = indexOfCubeInChannel(cube); + switch (mappingMode) { + case MAPPING_MODE_ALL: cubeOn = true; break; + case MAPPING_MODE_SINGLE_CUBE: cubeOn = (cubeIndex == ci); break; + case MAPPING_MODE_CHANNEL: cubeOn = (indexOfCubeInChannel > 0); break; + } + if (cubeOn) { + if (mappingMode == MAPPING_MODE_CHANNEL) { + color cc = off; + switch (indexOfCubeInChannel) { + case 1: cc = r; break; + case 2: cc = r|g; break; + case 3: cc = g; break; + case 4: cc = b; break; + case 5: cc = r|b; break; + } + setColor(cube, cc); + } else if (cubeMode == CUBE_MODE_STRIP_PATTERN) { + int si = 0; + color sc = off; + for (Strip strip : cube.strips) { + int faceI = si / Face.STRIPS_PER_FACE; + switch (faceI) { + case 0: sc = r; break; + case 1: sc = g; break; + case 2: sc = b; break; + case 3: sc = r|g|b; break; + } + if (si % Face.STRIPS_PER_FACE == 2) { + sc = r|g; + } + setColor(strip, sc); + ++si; + } + } else if (cubeMode == CUBE_MODE_SINGLE_STRIP) { + setColor(cube, off); + setColor(cube.strips.get(stripIndex), c); + } else { + setColor(cube, c); + } + } else { + setColor(cube, off); + } + ++ci; + } + } + + public void setCube(int index) { + cubeIndex = index % model.cubes.size(); + } + + public void incCube() { + cubeIndex = (cubeIndex + 1) % model.cubes.size(); + } + + public void decCube() { + --cubeIndex; + if (cubeIndex < 0) { + cubeIndex += model.cubes.size(); + } + } + + public void setChannel(int index) { + if (numChannels > 0) { + channelIndex = index % numChannels; + } + setChannel(); + } + + public void incChannel() { + channelIndex = (channelIndex + 1) % numChannels; + setChannel(); + } + + public void decChannel() { + channelIndex = (channelIndex + numChannels - 1) % numChannels; + setChannel(); + } + + public void setStrip(int index) { + stripIndex = index % Cube.STRIPS_PER_CUBE; + } + + public void incStrip() { + stripIndex = (stripIndex + 1) % Cube.STRIPS_PER_CUBE; + } + + public void decStrip() { + stripIndex = (stripIndex + Cube.STRIPS_PER_CUBE - 1) % Cube.STRIPS_PER_CUBE; + } + + public void keyPressed(UIMapping uiMapping) { + switch (keyCode) { + case UP: if (mappingMode == MAPPING_MODE_CHANNEL) incChannel(); else incCube(); break; + case DOWN: if (mappingMode == MAPPING_MODE_CHANNEL) decChannel(); else decCube(); break; + case LEFT: decStrip(); break; + case RIGHT: incStrip(); break; + } + switch (key) { + case 'r': channelModeRed = !channelModeRed; break; + case 'g': channelModeGreen = !channelModeGreen; break; + case 'b': channelModeBlue = !channelModeBlue; break; + } + uiMapping.setChannelID(channelIndex+1); + uiMapping.setCubeID(cubeIndex+1); + uiMapping.setStripID(stripIndex+1); + uiMapping.redraw(); + } + }