/* * VC1 NEON optimisations * * Copyright (c) 2010 Rob Clark * Copyright (c) 2011 Mans Rullgard * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/arm/asm.S" #include "neon.S" #include "config.h" @ Transpose rows into columns of a matrix of 16-bit elements. For 4x4, pass @ double-word registers, for 8x4, pass quad-word registers. .macro transpose16 r0, r1, r2, r3 @ At this point: @ row[0] r0 @ row[1] r1 @ row[2] r2 @ row[3] r3 vtrn.16 \r0, \r1 @ first and second row vtrn.16 \r2, \r3 @ third and fourth row vtrn.32 \r0, \r2 @ first and third row vtrn.32 \r1, \r3 @ second and fourth row @ At this point, if registers are quad-word: @ column[0] d0 @ column[1] d2 @ column[2] d4 @ column[3] d6 @ column[4] d1 @ column[5] d3 @ column[6] d5 @ column[7] d7 @ At this point, if registers are double-word: @ column[0] d0 @ column[1] d1 @ column[2] d2 @ column[3] d3 .endm @ ff_vc1_inv_trans_{4,8}x{4,8}_neon and overflow: The input values in the file @ are supposed to be in a specific range as to allow for 16-bit math without @ causing overflows, but sometimes the input values are just big enough to @ barely cause overflow in vadd instructions like: @ @ vadd.i16 q0, q8, q10 @ vshr.s16 q0, q0, #\rshift @ @ To prevent these borderline cases from overflowing, we just need one more @ bit of precision, which is accomplished by replacing the sequence above with: @ @ vhadd.s16 q0, q8, q10 @ vshr.s16 q0, q0, #(\rshift -1) @ @ This works because vhadd is a single instruction that adds, then shifts to @ the right once, all before writing the result to the destination register. @ @ Even with this workaround, there were still some files that caused overflows @ in ff_vc1_inv_trans_8x8_neon. See the comments in ff_vc1_inv_trans_8x8_neon @ for the additional workaround. @ Takes 4 columns of 8 values each and operates on it. Modeled after the first @ for loop in vc1_inv_trans_4x8_c. @ Input columns: q0 q1 q2 q3 @ Output columns: q0 q1 q2 q3 @ Trashes: r12 q8 q9 q10 q11 q12 q13 .macro vc1_inv_trans_4x8_helper add rshift @ Compute temp1, temp2 and setup scalar #17, #22, #10 vadd.i16 q12, q0, q2 @ temp1 = src[0] + src[2] movw r12, #17 vsub.i16 q13, q0, q2 @ temp2 = src[0] - src[2] movt r12, #22 vmov.32 d0[0], r12 movw r12, #10 vmov.16 d1[0], r12 vmov.i16 q8, #\add @ t1 will accumulate here vmov.i16 q9, #\add @ t2 will accumulate here vmul.i16 q10, q1, d0[1] @ t3 = 22 * (src[1]) vmul.i16 q11, q3, d0[1] @ t4 = 22 * (src[3]) vmla.i16 q8, q12, d0[0] @ t1 = 17 * (temp1) + 4 vmla.i16 q9, q13, d0[0] @ t2 = 17 * (temp2) + 4 vmla.i16 q10, q3, d1[0] @ t3 += 10 * src[3] vmls.i16 q11, q1, d1[0] @ t4 -= 10 * src[1] vhadd.s16 q0, q8, q10 @ dst[0] = (t1 + t3) >> 1 vhsub.s16 q3, q8, q10 @ dst[3] = (t1 - t3) >> 1 vhsub.s16 q1, q9, q11 @ dst[1] = (t2 - t4) >> 1 vhadd.s16 q2, q9, q11 @ dst[2] = (t2 + t4) >> 1 @ Halving add/sub above already did one shift vshr.s16 q0, q0, #(\rshift - 1) @ dst[0] >>= (rshift - 1) vshr.s16 q3, q3, #(\rshift - 1) @ dst[3] >>= (rshift - 1) vshr.s16 q1, q1, #(\rshift - 1) @ dst[1] >>= (rshift - 1) vshr.s16 q2, q2, #(\rshift - 1) @ dst[2] >>= (rshift - 1) .endm @ Takes 8 columns of 4 values each and operates on it. Modeled after the second @ for loop in vc1_inv_trans_4x8_c. @ Input columns: d0 d2 d4 d6 d1 d3 d5 d7 @ Output columns: d16 d17 d18 d19 d21 d20 d23 d22 @ Trashes all NEON registers (and r12) except for: q4 q5 q6 q7 .macro vc1_inv_trans_8x4_helper add add1beforeshift rshift @ At this point: @ src[0] d0 overwritten later @ src[8] d2 @ src[16] d4 overwritten later @ src[24] d6 @ src[32] d1 overwritten later @ src[40] d3 @ src[48] d5 overwritten later @ src[56] d7 movw r12, #12 vmov.i16 q14, #\add @ t1|t2 will accumulate here movt r12, #6 vadd.i16 d20, d0, d1 @ temp1 = src[0] + src[32] vsub.i16 d21, d0, d1 @ temp2 = src[0] - src[32] vmov.i32 d0[0], r12 @ 16-bit: d0[0] = #12, d0[1] = #6 vshl.i16 q15, q2, #4 @ t3|t4 = 16 * (src[16]|src[48]) vswp d4, d5 @ q2 = src[48]|src[16] vmla.i16 q14, q10, d0[0] @ t1|t2 = 12 * (temp1|temp2) + 64 movw r12, #15 movt r12, #9 vmov.i32 d0[1], r12 @ 16-bit: d0[2] = #15, d0[3] = #9 vneg.s16 d31, d31 @ t4 = -t4 vmla.i16 q15, q2, d0[1] @ t3|t4 += 6 * (src[48]|src[16]) @ At this point: @ d0[2] #15 @ d0[3] #9 @ q1 src[8]|src[40] @ q3 src[24]|src[56] @ q14 old t1|t2 @ q15 old t3|t4 vshl.i16 q8, q1, #4 @ t1|t2 = 16 * (src[8]|src[40]) vswp d2, d3 @ q1 = src[40]|src[8] vshl.i16 q12, q3, #4 @ temp3a|temp4a = 16 * src[24]|src[56] vswp d6, d7 @ q3 = src[56]|src[24] vshl.i16 q13, q1, #2 @ temp3b|temp4b = 4 * (src[40]|src[8]) vshl.i16 q2, q3, #2 @ temp1|temp2 = 4 * (src[56]|src[24]) vswp d3, d6 @ q1 = src[40]|src[56], q3 = src[8]|src[24] vsub.i16 q9, q13, q12 @ t3|t4 = - (temp3a|temp4a) + (temp3b|temp4b) vadd.i16 q8, q8, q2 @ t1|t2 += temp1|temp2 vmul.i16 q12, q3, d0[3] @ temp3|temp4 = 9 * src[8]|src[24] vmla.i16 q8, q1, d0[3] @ t1|t2 += 9 * (src[40]|src[56]) vswp d6, d7 @ q3 = src[24]|src[8] vswp d2, d3 @ q1 = src[56]|src[40] vsub.i16 q11, q14, q15 @ t8|t7 = old t1|t2 - old t3|t4 vadd.i16 q10, q14, q15 @ t5|t6 = old t1|t2 + old t3|t4 .if \add1beforeshift vmov.i16 q15, #1 .endif vadd.i16 d18, d18, d24 @ t3 += temp3 vsub.i16 d19, d19, d25 @ t4 -= temp4 vswp d22, d23 @ q11 = t7|t8 vneg.s16 d17, d17 @ t2 = -t2 vmla.i16 q9, q1, d0[2] @ t3|t4 += 15 * src[56]|src[40] vmla.i16 q8, q3, d0[2] @ t1|t2 += 15 * src[24]|src[8] @ At this point: @ t1 d16 @ t2 d17 @ t3 d18 @ t4 d19 @ t5 d20 @ t6 d21 @ t7 d22 @ t8 d23 @ #1 q15 .if \add1beforeshift vadd.i16 q3, q15, q10 @ line[7,6] = t5|t6 + 1 vadd.i16 q2, q15, q11 @ line[5,4] = t7|t8 + 1 .endif @ Sometimes this overflows, so to get one additional bit of precision, use @ a single instruction that both adds and shifts right (halving). vhadd.s16 q1, q9, q11 @ line[2,3] = (t3|t4 + t7|t8) >> 1 vhadd.s16 q0, q8, q10 @ line[0,1] = (t1|t2 + t5|t6) >> 1 .if \add1beforeshift vhsub.s16 q2, q2, q9 @ line[5,4] = (t7|t8 - t3|t4 + 1) >> 1 vhsub.s16 q3, q3, q8 @ line[7,6] = (t5|t6 - t1|t2 + 1) >> 1 .else vhsub.s16 q2, q11, q9 @ line[5,4] = (t7|t8 - t3|t4) >> 1 vhsub.s16 q3, q10, q8 @ line[7,6] = (t5|t6 - t1|t2) >> 1 .endif vshr.s16 q9, q1, #(\rshift - 1) @ one shift is already done by vhadd/vhsub above vshr.s16 q8, q0, #(\rshift - 1) vshr.s16 q10, q2, #(\rshift - 1) vshr.s16 q11, q3, #(\rshift - 1) @ At this point: @ dst[0] d16 @ dst[1] d17 @ dst[2] d18 @ dst[3] d19 @ dst[4] d21 @ dst[5] d20 @ dst[6] d23 @ dst[7] d22 .endm @ This is modeled after the first and second for loop in vc1_inv_trans_8x8_c. @ Input columns: q8, q9, q10, q11, q12, q13, q14, q15 @ Output columns: q8, q9, q10, q11, q12, q13, q14, q15 @ Trashes all NEON registers (and r12) except for: q4 q5 q6 q7 .macro vc1_inv_trans_8x8_helper add add1beforeshift rshift @ This actually computes half of t1, t2, t3, t4, as explained below @ near `tNhalf`. vmov.i16 q0, #(6 / 2) @ q0 = #6/2 vshl.i16 q1, q10, #3 @ t3 = 16/2 * src[16] vshl.i16 q3, q14, #3 @ temp4 = 16/2 * src[48] vmul.i16 q2, q10, q0 @ t4 = 6/2 * src[16] vmla.i16 q1, q14, q0 @ t3 += 6/2 * src[48] @ unused: q0, q10, q14 vmov.i16 q0, #(12 / 2) @ q0 = #12/2 vadd.i16 q10, q8, q12 @ temp1 = src[0] + src[32] vsub.i16 q14, q8, q12 @ temp2 = src[0] - src[32] @ unused: q8, q12 vmov.i16 q8, #(\add / 2) @ t1 will accumulate here vmov.i16 q12, #(\add / 2) @ t2 will accumulate here movw r12, #15 vsub.i16 q2, q2, q3 @ t4 = 6/2 * src[16] - 16/2 * src[48] movt r12, #9 @ unused: q3 vmla.i16 q8, q10, q0 @ t1 = 12/2 * temp1 + add vmla.i16 q12, q14, q0 @ t2 = 12/2 * temp2 + add vmov.i32 d0[0], r12 @ unused: q3, q10, q14 @ At this point: @ q0 d0=#15|#9 @ q1 old t3 @ q2 old t4 @ q3 @ q8 old t1 @ q9 src[8] @ q10 @ q11 src[24] @ q12 old t2 @ q13 src[40] @ q14 @ q15 src[56] @ unused: q3, q10, q14 movw r12, #16 vshl.i16 q3, q9, #4 @ t1 = 16 * src[8] movt r12, #4 vshl.i16 q10, q9, #2 @ t4 = 4 * src[8] vmov.i32 d1[0], r12 vmul.i16 q14, q9, d0[0] @ t2 = 15 * src[8] vmul.i16 q9, q9, d0[1] @ t3 = 9 * src[8] @ unused: none vmla.i16 q3, q11, d0[0] @ t1 += 15 * src[24] vmls.i16 q10, q11, d0[1] @ t4 -= 9 * src[24] vmls.i16 q14, q11, d1[1] @ t2 -= 4 * src[24] vmls.i16 q9, q11, d1[0] @ t3 -= 16 * src[24] @ unused: q11 vmla.i16 q3, q13, d0[1] @ t1 += 9 * src[40] vmla.i16 q10, q13, d0[0] @ t4 += 15 * src[40] vmls.i16 q14, q13, d1[0] @ t2 -= 16 * src[40] vmla.i16 q9, q13, d1[1] @ t3 += 4 * src[40] @ unused: q11, q13 @ Compute t5, t6, t7, t8 from old t1, t2, t3, t4. Actually, it computes @ half of t5, t6, t7, t8 since t1, t2, t3, t4 are halved. vadd.i16 q11, q8, q1 @ t5 = t1 + t3 vsub.i16 q1, q8, q1 @ t8 = t1 - t3 vadd.i16 q13, q12, q2 @ t6 = t2 + t4 vsub.i16 q2, q12, q2 @ t7 = t2 - t4 @ unused: q8, q12 .if \add1beforeshift vmov.i16 q12, #1 .endif @ unused: q8 vmla.i16 q3, q15, d1[1] @ t1 += 4 * src[56] vmls.i16 q14, q15, d0[1] @ t2 -= 9 * src[56] vmla.i16 q9, q15, d0[0] @ t3 += 15 * src[56] vmls.i16 q10, q15, d1[0] @ t4 -= 16 * src[56] @ unused: q0, q8, q15 @ At this point: @ t1 q3 @ t2 q14 @ t3 q9 @ t4 q10 @ t5half q11 @ t6half q13 @ t7half q2 @ t8half q1 @ #1 q12 @ @ tNhalf is half of the value of tN (as described in vc1_inv_trans_8x8_c). @ This is done because sometimes files have input that causes tN + tM to @ overflow. To avoid this overflow, we compute tNhalf, then compute @ tNhalf + tM (which doesn't overflow), and then we use vhadd to compute @ (tNhalf + (tNhalf + tM)) >> 1 which does not overflow because it is @ one instruction. @ For each pair of tN and tM, do: @ lineA = t5half + t1 @ if add1beforeshift: t1 -= 1 @ lineA = (t5half + lineA) >> 1 @ lineB = t5half - t1 @ lineB = (t5half + lineB) >> 1 @ lineA >>= rshift - 1 @ lineB >>= rshift - 1 vadd.i16 q8, q11, q3 @ q8 = t5half + t1 .if \add1beforeshift vsub.i16 q3, q3, q12 @ q3 = t1 - 1 .endif vadd.i16 q0, q13, q14 @ q0 = t6half + t2 .if \add1beforeshift vsub.i16 q14, q14, q12 @ q14 = t2 - 1 .endif vadd.i16 q15, q2, q9 @ q15 = t7half + t3 .if \add1beforeshift vsub.i16 q9, q9, q12 @ q9 = t3 - 1 .endif @ unused: none vhadd.s16 q8, q11, q8 @ q8 = (t5half + t5half + t1) >> 1 vsub.i16 q3, q11, q3 @ q3 = t5half - t1 + 1 vhadd.s16 q0, q13, q0 @ q0 = (t6half + t6half + t2) >> 1 vsub.i16 q14, q13, q14 @ q14 = t6half - t2 + 1 vhadd.s16 q15, q2, q15 @ q15 = (t7half + t7half + t3) >> 1 vsub.i16 q9, q2, q9 @ q9 = t7half - t3 + 1 vhadd.s16 q3, q11, q3 @ q3 = (t5half + t5half - t1 + 1) >> 1 @ unused: q11 vadd.i16 q11, q1, q10 @ q11 = t8half + t4 .if \add1beforeshift vsub.i16 q10, q10, q12 @ q10 = t4 - 1 .endif @ unused: q12 vhadd.s16 q14, q13, q14 @ q14 = (t6half + t6half - t2 + 1) >> 1 @ unused: q12, q13 vhadd.s16 q13, q2, q9 @ q9 = (t7half + t7half - t3 + 1) >> 1 @ unused: q12, q2, q9 vsub.i16 q10, q1, q10 @ q10 = t8half - t4 + 1 vhadd.s16 q11, q1, q11 @ q11 = (t8half + t8half + t4) >> 1 vshr.s16 q8, q8, #(\rshift - 1) @ q8 = line[0] vhadd.s16 q12, q1, q10 @ q12 = (t8half + t8half - t4 + 1) >> 1 vshr.s16 q9, q0, #(\rshift - 1) @ q9 = line[1] vshr.s16 q10, q15, #(\rshift - 1) @ q10 = line[2] vshr.s16 q11, q11, #(\rshift - 1) @ q11 = line[3] vshr.s16 q12, q12, #(\rshift - 1) @ q12 = line[4] vshr.s16 q13, q13, #(\rshift - 1) @ q13 = line[5] vshr.s16 q14, q14, #(\rshift - 1) @ q14 = line[6] vshr.s16 q15, q3, #(\rshift - 1) @ q15 = line[7] .endm @ (int16_t *block [r0]) function ff_vc1_inv_trans_8x8_neon, export=1 vld1.64 {q8-q9}, [r0,:128]! vld1.64 {q10-q11}, [r0,:128]! vld1.64 {q12-q13}, [r0,:128]! vld1.64 {q14-q15}, [r0,:128] sub r0, r0, #(16 * 2 * 3) @ restore r0 @ At this point: @ src[0] q8 @ src[8] q9 @ src[16] q10 @ src[24] q11 @ src[32] q12 @ src[40] q13 @ src[48] q14 @ src[56] q15 vc1_inv_trans_8x8_helper add=4 add1beforeshift=0 rshift=3 @ Transpose result matrix of 8x8 swap4 d17, d19, d21, d23, d24, d26, d28, d30 transpose16_4x4 q8, q9, q10, q11, q12, q13, q14, q15 vc1_inv_trans_8x8_helper add=64 add1beforeshift=1 rshift=7 vst1.64 {q8-q9}, [r0,:128]! vst1.64 {q10-q11}, [r0,:128]! vst1.64 {q12-q13}, [r0,:128]! vst1.64 {q14-q15}, [r0,:128] bx lr endfunc @ (uint8_t *dest [r0], int linesize [r1], int16_t *block [r2]) function ff_vc1_inv_trans_8x4_neon, export=1 vld1.64 {q0-q1}, [r2,:128]! @ load 8 * 4 * 2 = 64 bytes / 16 bytes per quad = 4 quad registers vld1.64 {q2-q3}, [r2,:128] transpose16 q0 q1 q2 q3 @ transpose rows to columns @ At this point: @ src[0] d0 @ src[1] d2 @ src[2] d4 @ src[3] d6 @ src[4] d1 @ src[5] d3 @ src[6] d5 @ src[7] d7 vc1_inv_trans_8x4_helper add=4 add1beforeshift=0 rshift=3 @ Move output to more standardized registers vmov d0, d16 vmov d2, d17 vmov d4, d18 vmov d6, d19 vmov d1, d21 vmov d3, d20 vmov d5, d23 vmov d7, d22 @ At this point: @ dst[0] d0 @ dst[1] d2 @ dst[2] d4 @ dst[3] d6 @ dst[4] d1 @ dst[5] d3 @ dst[6] d5 @ dst[7] d7 transpose16 q0 q1 q2 q3 @ turn columns into rows @ At this point: @ row[0] q0 @ row[1] q1 @ row[2] q2 @ row[3] q3 vc1_inv_trans_4x8_helper add=64 rshift=7 @ At this point: @ line[0].l d0 @ line[0].h d1 @ line[1].l d2 @ line[1].h d3 @ line[2].l d4 @ line[2].h d5 @ line[3].l d6 @ line[3].h d7 @ unused registers: q12, q13, q14, q15 vld1.64 {d28}, [r0,:64], r1 @ read dest vld1.64 {d29}, [r0,:64], r1 vld1.64 {d30}, [r0,:64], r1 vld1.64 {d31}, [r0,:64], r1 sub r0, r0, r1, lsl #2 @ restore original r0 value vaddw.u8 q0, q0, d28 @ line[0] += dest[0] vaddw.u8 q1, q1, d29 @ line[1] += dest[1] vaddw.u8 q2, q2, d30 @ line[2] += dest[2] vaddw.u8 q3, q3, d31 @ line[3] += dest[3] vqmovun.s16 d0, q0 @ line[0] vqmovun.s16 d1, q1 @ line[1] vqmovun.s16 d2, q2 @ line[2] vqmovun.s16 d3, q3 @ line[3] vst1.64 {d0}, [r0,:64], r1 @ write dest vst1.64 {d1}, [r0,:64], r1 vst1.64 {d2}, [r0,:64], r1 vst1.64 {d3}, [r0,:64] bx lr endfunc @ (uint8_t *dest [r0], int linesize [r1], int16_t *block [r2]) function ff_vc1_inv_trans_4x8_neon, export=1 mov r12, #(8 * 2) @ 8 elements per line, each element 2 bytes vld4.16 {d0[], d2[], d4[], d6[]}, [r2,:64], r12 @ read each column into a q register vld4.16 {d0[1], d2[1], d4[1], d6[1]}, [r2,:64], r12 vld4.16 {d0[2], d2[2], d4[2], d6[2]}, [r2,:64], r12 vld4.16 {d0[3], d2[3], d4[3], d6[3]}, [r2,:64], r12 vld4.16 {d1[], d3[], d5[], d7[]}, [r2,:64], r12 vld4.16 {d1[1], d3[1], d5[1], d7[1]}, [r2,:64], r12 vld4.16 {d1[2], d3[2], d5[2], d7[2]}, [r2,:64], r12 vld4.16 {d1[3], d3[3], d5[3], d7[3]}, [r2,:64] vc1_inv_trans_4x8_helper add=4 rshift=3 @ At this point: @ dst[0] = q0 @ dst[1] = q1 @ dst[2] = q2 @ dst[3] = q3 transpose16 q0 q1 q2 q3 @ Transpose rows (registers) into columns vc1_inv_trans_8x4_helper add=64 add1beforeshift=1 rshift=7 vld1.32 {d28[]}, [r0,:32], r1 @ read dest vld1.32 {d28[1]}, [r0,:32], r1 vld1.32 {d29[]}, [r0,:32], r1 vld1.32 {d29[1]}, [r0,:32], r1 vld1.32 {d30[]}, [r0,:32], r1 vld1.32 {d30[0]}, [r0,:32], r1 vld1.32 {d31[]}, [r0,:32], r1 vld1.32 {d31[0]}, [r0,:32], r1 sub r0, r0, r1, lsl #3 @ restore original r0 value vaddw.u8 q8, q8, d28 @ line[0,1] += dest[0,1] vaddw.u8 q9, q9, d29 @ line[2,3] += dest[2,3] vaddw.u8 q10, q10, d30 @ line[5,4] += dest[5,4] vaddw.u8 q11, q11, d31 @ line[7,6] += dest[7,6] vqmovun.s16 d16, q8 @ clip(line[0,1]) vqmovun.s16 d18, q9 @ clip(line[2,3]) vqmovun.s16 d20, q10 @ clip(line[5,4]) vqmovun.s16 d22, q11 @ clip(line[7,6]) vst1.32 {d16[0]}, [r0,:32], r1 @ write dest vst1.32 {d16[1]}, [r0,:32], r1 vst1.32 {d18[0]}, [r0,:32], r1 vst1.32 {d18[1]}, [r0,:32], r1 vst1.32 {d20[1]}, [r0,:32], r1 vst1.32 {d20[0]}, [r0,:32], r1 vst1.32 {d22[1]}, [r0,:32], r1 vst1.32 {d22[0]}, [r0,:32] bx lr endfunc @ Setup constants in registers which are used by vc1_inv_trans_4x4_helper .macro vc1_inv_trans_4x4_helper_setup vmov.i16 q13, #17 vmov.i16 q14, #22 vmov.i16 d30, #10 @ only need double-word, not quad-word .endm @ This is modeled after the first for loop in vc1_inv_trans_4x4_c. .macro vc1_inv_trans_4x4_helper add rshift vmov.i16 q2, #\add @ t1|t2 will accumulate here vadd.i16 d16, d0, d1 @ temp1 = src[0] + src[2] vsub.i16 d17, d0, d1 @ temp2 = src[0] - src[2] vmul.i16 q3, q14, q1 @ t3|t4 = 22 * (src[1]|src[3]) vmla.i16 q2, q13, q8 @ t1|t2 = 17 * (temp1|temp2) + add vmla.i16 d6, d30, d3 @ t3 += 10 * src[3] vmls.i16 d7, d30, d2 @ t4 -= 10 * src[1] vadd.i16 q0, q2, q3 @ dst[0,2] = (t1|t2 + t3|t4) vsub.i16 q1, q2, q3 @ dst[3,1] = (t1|t2 - t3|t4) vshr.s16 q0, q0, #\rshift @ dst[0,2] >>= rshift vshr.s16 q1, q1, #\rshift @ dst[3,1] >>= rshift .endm @ (uint8_t *dest [r0], int linesize [r1], int16_t *block [r2]) function ff_vc1_inv_trans_4x4_neon, export=1 mov r12, #(8 * 2) @ 8 elements per line, each element 2 bytes vld4.16 {d0[], d1[], d2[], d3[]}, [r2,:64], r12 @ read each column into a register vld4.16 {d0[1], d1[1], d2[1], d3[1]}, [r2,:64], r12 vld4.16 {d0[2], d1[2], d2[2], d3[2]}, [r2,:64], r12 vld4.16 {d0[3], d1[3], d2[3], d3[3]}, [r2,:64] vswp d1, d2 @ so that we can later access column 1 and column 3 as a single q1 register vc1_inv_trans_4x4_helper_setup @ At this point: @ src[0] = d0 @ src[1] = d2 @ src[2] = d1 @ src[3] = d3 vc1_inv_trans_4x4_helper add=4 rshift=3 @ compute t1, t2, t3, t4 and combine them into dst[0-3] @ At this point: @ dst[0] = d0 @ dst[1] = d3 @ dst[2] = d1 @ dst[3] = d2 transpose16 d0 d3 d1 d2 @ Transpose rows (registers) into columns @ At this point: @ src[0] = d0 @ src[8] = d3 @ src[16] = d1 @ src[24] = d2 vswp d2, d3 @ so that we can later access column 1 and column 3 in order as a single q1 register @ At this point: @ src[0] = d0 @ src[8] = d2 @ src[16] = d1 @ src[24] = d3 vc1_inv_trans_4x4_helper add=64 rshift=7 @ compute t1, t2, t3, t4 and combine them into dst[0-3] @ At this point: @ line[0] = d0 @ line[1] = d3 @ line[2] = d1 @ line[3] = d2 vld1.32 {d18[]}, [r0,:32], r1 @ read dest vld1.32 {d19[]}, [r0,:32], r1 vld1.32 {d18[1]}, [r0,:32], r1 vld1.32 {d19[0]}, [r0,:32], r1 sub r0, r0, r1, lsl #2 @ restore original r0 value vaddw.u8 q0, q0, d18 @ line[0,2] += dest[0,2] vaddw.u8 q1, q1, d19 @ line[3,1] += dest[3,1] vqmovun.s16 d0, q0 @ clip(line[0,2]) vqmovun.s16 d1, q1 @ clip(line[3,1]) vst1.32 {d0[0]}, [r0,:32], r1 @ write dest vst1.32 {d1[1]}, [r0,:32], r1 vst1.32 {d0[1]}, [r0,:32], r1 vst1.32 {d1[0]}, [r0,:32] bx lr endfunc #if HAVE_AS_DN_DIRECTIVE @ The absolute value of multiplication constants from vc1_mspel_filter and vc1_mspel_{ver,hor}_filter_16bits. @ The sign is embedded in the code below that carries out the multiplication (mspel_filter{,.16}). #define MSPEL_MODE_1_MUL_CONSTANTS 4 53 18 3 #define MSPEL_MODE_2_MUL_CONSTANTS 1 9 9 1 #define MSPEL_MODE_3_MUL_CONSTANTS 3 18 53 4 @ These constants are from reading the source code of vc1_mspel_mc and determining the value that @ is added to `rnd` to result in the variable `r`, and the value of the variable `shift`. #define MSPEL_MODES_11_ADDSHIFT_CONSTANTS 15 5 #define MSPEL_MODES_12_ADDSHIFT_CONSTANTS 3 3 #define MSPEL_MODES_13_ADDSHIFT_CONSTANTS 15 5 #define MSPEL_MODES_21_ADDSHIFT_CONSTANTS MSPEL_MODES_12_ADDSHIFT_CONSTANTS #define MSPEL_MODES_22_ADDSHIFT_CONSTANTS 0 1 #define MSPEL_MODES_23_ADDSHIFT_CONSTANTS 3 3 #define MSPEL_MODES_31_ADDSHIFT_CONSTANTS MSPEL_MODES_13_ADDSHIFT_CONSTANTS #define MSPEL_MODES_32_ADDSHIFT_CONSTANTS MSPEL_MODES_23_ADDSHIFT_CONSTANTS #define MSPEL_MODES_33_ADDSHIFT_CONSTANTS 15 5 @ The addition and shift constants from vc1_mspel_filter. #define MSPEL_MODE_1_ADDSHIFT_CONSTANTS 32 6 #define MSPEL_MODE_2_ADDSHIFT_CONSTANTS 8 4 #define MSPEL_MODE_3_ADDSHIFT_CONSTANTS 32 6 @ Setup constants in registers for a subsequent use of mspel_filter{,.16}. .macro mspel_constants typesize reg_a reg_b reg_c reg_d filter_a filter_b filter_c filter_d reg_add filter_add_register @ Define double-word register aliases. Typesize should be i8 or i16. ra .dn \reg_a\().\typesize rb .dn \reg_b\().\typesize rc .dn \reg_c\().\typesize rd .dn \reg_d\().\typesize @ Only set the register if the value is not 1 and unique .if \filter_a != 1 vmov ra, #\filter_a @ ra = filter_a .endif vmov rb, #\filter_b @ rb = filter_b .if \filter_b != \filter_c vmov rc, #\filter_c @ rc = filter_c .endif .if \filter_d != 1 vmov rd, #\filter_d @ rd = filter_d .endif @ vdup to double the size of typesize .ifc \typesize,i8 vdup.16 \reg_add, \filter_add_register @ reg_add = filter_add_register .else vdup.32 \reg_add, \filter_add_register @ reg_add = filter_add_register .endif .unreq ra .unreq rb .unreq rc .unreq rd .endm @ After mspel_constants has been used, do the filtering. .macro mspel_filter acc dest src0 src1 src2 src3 filter_a filter_b filter_c filter_d reg_a reg_b reg_c reg_d reg_add filter_shift narrow=1 .if \filter_a != 1 @ If filter_a != 1, then we need a move and subtract instruction vmov \acc, \reg_add @ acc = reg_add vmlsl.u8 \acc, \reg_a, \src0 @ acc -= filter_a * src[-stride] .else @ If filter_a is 1, then just subtract without an extra move vsubw.u8 \acc, \reg_add, \src0 @ acc = reg_add - src[-stride] @ since filter_a == 1 .endif vmlal.u8 \acc, \reg_b, \src1 @ acc += filter_b * src[0] .if \filter_b != \filter_c vmlal.u8 \acc, \reg_c, \src2 @ acc += filter_c * src[stride] .else @ If filter_b is the same as filter_c, use the same reg_b register vmlal.u8 \acc, \reg_b, \src2 @ acc += filter_c * src[stride] @ where filter_c == filter_b .endif .if \filter_d != 1 @ If filter_d != 1, then do a multiply accumulate vmlsl.u8 \acc, \reg_d, \src3 @ acc -= filter_d * src[stride * 2] .else @ If filter_d is 1, then just do a subtract vsubw.u8 \acc, \acc, \src3 @ acc -= src[stride * 2] @ since filter_d == 1 .endif .if \narrow vqshrun.s16 \dest, \acc, #\filter_shift @ dest = clip_uint8(acc >> filter_shift) .else vshr.s16 \dest, \acc, #\filter_shift @ dest = acc >> filter_shift .endif .endm @ This is similar to mspel_filter, but the input is 16-bit instead of 8-bit and narrow=0 is not supported. .macro mspel_filter.16 acc0 acc1 acc0_0 acc0_1 dest src0 src1 src2 src3 src4 src5 src6 src7 filter_a filter_b filter_c filter_d reg_a reg_b reg_c reg_d reg_add filter_shift .if \filter_a != 1 vmov \acc0, \reg_add vmov \acc1, \reg_add vmlsl.s16 \acc0, \reg_a, \src0 vmlsl.s16 \acc1, \reg_a, \src1 .else vsubw.s16 \acc0, \reg_add, \src0 vsubw.s16 \acc1, \reg_add, \src1 .endif vmlal.s16 \acc0, \reg_b, \src2 vmlal.s16 \acc1, \reg_b, \src3 .if \filter_b != \filter_c vmlal.s16 \acc0, \reg_c, \src4 vmlal.s16 \acc1, \reg_c, \src5 .else vmlal.s16 \acc0, \reg_b, \src4 vmlal.s16 \acc1, \reg_b, \src5 .endif .if \filter_d != 1 vmlsl.s16 \acc0, \reg_d, \src6 vmlsl.s16 \acc1, \reg_d, \src7 .else vsubw.s16 \acc0, \acc0, \src6 vsubw.s16 \acc1, \acc1, \src7 .endif @ Use acc0_0 and acc0_1 as temp space vqshrun.s32 \acc0_0, \acc0, #\filter_shift @ Shift and narrow with saturation from s32 to u16 vqshrun.s32 \acc0_1, \acc1, #\filter_shift vqmovn.u16 \dest, \acc0 @ Narrow with saturation from u16 to u8 .endm @ Register usage for put_vc1_mspel_mc functions. Registers marked 'hv' are only used in put_vc1_mspel_mc_hv. @ @ r0 adjusted dst @ r1 adjusted src @ r2 stride @ r3 adjusted rnd @ r4 [hv] tmp @ r11 [hv] sp saved @ r12 loop counter @ d0 src[-stride] @ d1 src[0] @ d2 src[stride] @ d3 src[stride * 2] @ q0 [hv] src[-stride] @ q1 [hv] src[0] @ q2 [hv] src[stride] @ q3 [hv] src[stride * 2] @ d21 often result from mspel_filter @ q11 accumulator 0 @ q12 [hv] accumulator 1 @ q13 accumulator initial value @ d28 filter_a @ d29 filter_b @ d30 filter_c @ d31 filter_d @ (uint8_t *dst [r0], const uint8_t *src [r1], ptrdiff_t stride [r2], int rnd [r3]) .macro put_vc1_mspel_mc_hv hmode vmode filter_h_a filter_h_b filter_h_c filter_h_d filter_v_a filter_v_b filter_v_c filter_v_d filter_add filter_shift function ff_put_vc1_mspel_mc\hmode\()\vmode\()_neon, export=1 push {r4, r11, lr} mov r11, sp @ r11 = stack pointer before realignmnet A bic sp, sp, #15 @ sp = round down to multiple of 16 bytes T bic r4, r11, #15 T mov sp, r4 sub sp, sp, #(8*2*16) @ make space for 8 rows * 2 byte per element * 16 elements per row (to fit 11 actual elements per row) mov r4, sp @ r4 = int16_t tmp[8 * 16] sub r1, r1, #1 @ src -= 1 .if \filter_add != 0 add r3, r3, #\filter_add @ r3 = filter_add + rnd .endif mov r12, #8 @ loop counter sub r1, r1, r2 @ r1 = &src[-stride] @ slide back @ Do vertical filtering from src into tmp mspel_constants i8 d28 d29 d30 d31 \filter_v_a \filter_v_b \filter_v_c \filter_v_d q13 r3 vld1.64 {d0,d1}, [r1], r2 vld1.64 {d2,d3}, [r1], r2 vld1.64 {d4,d5}, [r1], r2 1: subs r12, r12, #4 vld1.64 {d6,d7}, [r1], r2 mspel_filter q11 q11 d0 d2 d4 d6 \filter_v_a \filter_v_b \filter_v_c \filter_v_d d28 d29 d30 d31 q13 \filter_shift narrow=0 mspel_filter q12 q12 d1 d3 d5 d7 \filter_v_a \filter_v_b \filter_v_c \filter_v_d d28 d29 d30 d31 q13 \filter_shift narrow=0 vst1.64 {q11,q12}, [r4,:128]! @ store and increment vld1.64 {d0,d1}, [r1], r2 mspel_filter q11 q11 d2 d4 d6 d0 \filter_v_a \filter_v_b \filter_v_c \filter_v_d d28 d29 d30 d31 q13 \filter_shift narrow=0 mspel_filter q12 q12 d3 d5 d7 d1 \filter_v_a \filter_v_b \filter_v_c \filter_v_d d28 d29 d30 d31 q13 \filter_shift narrow=0 vst1.64 {q11,q12}, [r4,:128]! @ store and increment vld1.64 {d2,d3}, [r1], r2 mspel_filter q11 q11 d4 d6 d0 d2 \filter_v_a \filter_v_b \filter_v_c \filter_v_d d28 d29 d30 d31 q13 \filter_shift narrow=0 mspel_filter q12 q12 d5 d7 d1 d3 \filter_v_a \filter_v_b \filter_v_c \filter_v_d d28 d29 d30 d31 q13 \filter_shift narrow=0 vst1.64 {q11,q12}, [r4,:128]! @ store and increment vld1.64 {d4,d5}, [r1], r2 mspel_filter q11 q11 d6 d0 d2 d4 \filter_v_a \filter_v_b \filter_v_c \filter_v_d d28 d29 d30 d31 q13 \filter_shift narrow=0 mspel_filter q12 q12 d7 d1 d3 d5 \filter_v_a \filter_v_b \filter_v_c \filter_v_d d28 d29 d30 d31 q13 \filter_shift narrow=0 vst1.64 {q11,q12}, [r4,:128]! @ store and increment bne 1b rsb r3, r3, #(64 + \filter_add) @ r3 = (64 + filter_add) - r3 mov r12, #8 @ loop counter mov r4, sp @ r4 = tmp @ Do horizontal filtering from temp to dst mspel_constants i16 d28 d29 d30 d31 \filter_h_a \filter_h_b \filter_h_c \filter_h_d q13 r3 2: subs r12, r12, #1 vld1.64 {q0,q1}, [r4,:128]! @ read one line of tmp vext.16 q2, q0, q1, #2 vext.16 q3, q0, q1, #3 vext.16 q1, q0, q1, #1 @ do last because it writes to q1 which is read by the other vext instructions mspel_filter.16 q11 q12 d22 d23 d21 d0 d1 d2 d3 d4 d5 d6 d7 \filter_h_a \filter_h_b \filter_h_c \filter_h_d d28 d29 d30 d31 q13 7 vst1.64 {d21}, [r0,:64], r2 @ store and increment dst bne 2b mov sp, r11 pop {r4, r11, pc} endfunc .endm @ Use C preprocessor and assembler macros to expand to functions for horizontal and vertical filtering. #define PUT_VC1_MSPEL_MC_HV(hmode, vmode) \ put_vc1_mspel_mc_hv hmode vmode \ MSPEL_MODE_ ## hmode ## _MUL_CONSTANTS \ MSPEL_MODE_ ## vmode ## _MUL_CONSTANTS \ MSPEL_MODES_ ## hmode ## vmode ## _ADDSHIFT_CONSTANTS PUT_VC1_MSPEL_MC_HV(1, 1) PUT_VC1_MSPEL_MC_HV(1, 2) PUT_VC1_MSPEL_MC_HV(1, 3) PUT_VC1_MSPEL_MC_HV(2, 1) PUT_VC1_MSPEL_MC_HV(2, 2) PUT_VC1_MSPEL_MC_HV(2, 3) PUT_VC1_MSPEL_MC_HV(3, 1) PUT_VC1_MSPEL_MC_HV(3, 2) PUT_VC1_MSPEL_MC_HV(3, 3) #undef PUT_VC1_MSPEL_MC_HV .macro put_vc1_mspel_mc_h_only hmode filter_a filter_b filter_c filter_d filter_add filter_shift function ff_put_vc1_mspel_mc\hmode\()0_neon, export=1 rsb r3, r3, #\filter_add @ r3 = filter_add - r = filter_add - rnd mov r12, #8 @ loop counter sub r1, r1, #1 @ slide back, using immediate mspel_constants i8 d28 d29 d30 d31 \filter_a \filter_b \filter_c \filter_d q13 r3 1: subs r12, r12, #1 vld1.64 {d0,d1}, [r1], r2 @ read 16 bytes even though we only need 11, also src += stride vext.8 d2, d0, d1, #2 vext.8 d3, d0, d1, #3 vext.8 d1, d0, d1, #1 @ do last because it writes to d1 which is read by the other vext instructions mspel_filter q11 d21 d0 d1 d2 d3 \filter_a \filter_b \filter_c \filter_d d28 d29 d30 d31 q13 \filter_shift vst1.64 {d21}, [r0,:64], r2 @ store and increment dst bne 1b bx lr endfunc .endm @ Use C preprocessor and assembler macros to expand to functions for horizontal only filtering. #define PUT_VC1_MSPEL_MC_H_ONLY(hmode) \ put_vc1_mspel_mc_h_only hmode MSPEL_MODE_ ## hmode ## _MUL_CONSTANTS MSPEL_MODE_ ## hmode ## _ADDSHIFT_CONSTANTS PUT_VC1_MSPEL_MC_H_ONLY(1) PUT_VC1_MSPEL_MC_H_ONLY(2) PUT_VC1_MSPEL_MC_H_ONLY(3) #undef PUT_VC1_MSPEL_MC_H_ONLY @ (uint8_t *dst [r0], const uint8_t *src [r1], ptrdiff_t stride [r2], int rnd [r3]) .macro put_vc1_mspel_mc_v_only vmode filter_a filter_b filter_c filter_d filter_add filter_shift function ff_put_vc1_mspel_mc0\vmode\()_neon, export=1 add r3, r3, #\filter_add - 1 @ r3 = filter_add - r = filter_add - (1 - rnd) = filter_add - 1 + rnd mov r12, #8 @ loop counter sub r1, r1, r2 @ r1 = &src[-stride] @ slide back mspel_constants i8 d28 d29 d30 d31 \filter_a \filter_b \filter_c \filter_d q13 r3 vld1.64 {d0}, [r1], r2 @ d0 = src[-stride] vld1.64 {d1}, [r1], r2 @ d1 = src[0] vld1.64 {d2}, [r1], r2 @ d2 = src[stride] 1: subs r12, r12, #4 vld1.64 {d3}, [r1], r2 @ d3 = src[stride * 2] mspel_filter q11 d21 d0 d1 d2 d3 \filter_a \filter_b \filter_c \filter_d d28 d29 d30 d31 q13 \filter_shift vst1.64 {d21}, [r0,:64], r2 @ store and increment dst vld1.64 {d0}, [r1], r2 @ d0 = next line mspel_filter q11 d21 d1 d2 d3 d0 \filter_a \filter_b \filter_c \filter_d d28 d29 d30 d31 q13 \filter_shift vst1.64 {d21}, [r0,:64], r2 @ store and increment dst vld1.64 {d1}, [r1], r2 @ d1 = next line mspel_filter q11 d21 d2 d3 d0 d1 \filter_a \filter_b \filter_c \filter_d d28 d29 d30 d31 q13 \filter_shift vst1.64 {d21}, [r0,:64], r2 @ store and increment dst vld1.64 {d2}, [r1], r2 @ d2 = next line mspel_filter q11 d21 d3 d0 d1 d2 \filter_a \filter_b \filter_c \filter_d d28 d29 d30 d31 q13 \filter_shift vst1.64 {d21}, [r0,:64], r2 @ store and increment dst bne 1b bx lr endfunc .endm @ Use C preprocessor and assembler macros to expand to functions for vertical only filtering. #define PUT_VC1_MSPEL_MC_V_ONLY(vmode) \ put_vc1_mspel_mc_v_only vmode MSPEL_MODE_ ## vmode ## _MUL_CONSTANTS MSPEL_MODE_ ## vmode ## _ADDSHIFT_CONSTANTS PUT_VC1_MSPEL_MC_V_ONLY(1) PUT_VC1_MSPEL_MC_V_ONLY(2) PUT_VC1_MSPEL_MC_V_ONLY(3) #undef PUT_VC1_MSPEL_MC_V_ONLY #endif function ff_put_pixels8x8_neon, export=1 vld1.64 {d0}, [r1], r2 vld1.64 {d1}, [r1], r2 vld1.64 {d2}, [r1], r2 vld1.64 {d3}, [r1], r2 vld1.64 {d4}, [r1], r2 vld1.64 {d5}, [r1], r2 vld1.64 {d6}, [r1], r2 vld1.64 {d7}, [r1] vst1.64 {d0}, [r0,:64], r2 vst1.64 {d1}, [r0,:64], r2 vst1.64 {d2}, [r0,:64], r2 vst1.64 {d3}, [r0,:64], r2 vst1.64 {d4}, [r0,:64], r2 vst1.64 {d5}, [r0,:64], r2 vst1.64 {d6}, [r0,:64], r2 vst1.64 {d7}, [r0,:64] bx lr endfunc function ff_vc1_inv_trans_8x8_dc_neon, export=1 ldrsh r2, [r2] @ int dc = block[0]; vld1.64 {d0}, [r0,:64], r1 vld1.64 {d1}, [r0,:64], r1 vld1.64 {d4}, [r0,:64], r1 vld1.64 {d5}, [r0,:64], r1 add r2, r2, r2, lsl #1 @ dc = (3 * dc + 1) >> 1; vld1.64 {d6}, [r0,:64], r1 add r2, r2, #1 vld1.64 {d7}, [r0,:64], r1 vld1.64 {d16}, [r0,:64], r1 vld1.64 {d17}, [r0,:64], r1 asr r2, r2, #1 sub r0, r0, r1, lsl #3 @ restore r0 to original value add r2, r2, r2, lsl #1 @ dc = (3 * dc + 16) >> 5; add r2, r2, #16 asr r2, r2, #5 vdup.16 q1, r2 @ dc vaddw.u8 q9, q1, d0 vaddw.u8 q10, q1, d1 vaddw.u8 q11, q1, d4 vaddw.u8 q12, q1, d5 vqmovun.s16 d0, q9 vqmovun.s16 d1, q10 vqmovun.s16 d4, q11 vst1.64 {d0}, [r0,:64], r1 vqmovun.s16 d5, q12 vst1.64 {d1}, [r0,:64], r1 vaddw.u8 q13, q1, d6 vst1.64 {d4}, [r0,:64], r1 vaddw.u8 q14, q1, d7 vst1.64 {d5}, [r0,:64], r1 vaddw.u8 q15, q1, d16 vaddw.u8 q1, q1, d17 @ this destroys q1 vqmovun.s16 d6, q13 vqmovun.s16 d7, q14 vqmovun.s16 d16, q15 vqmovun.s16 d17, q1 vst1.64 {d6}, [r0,:64], r1 vst1.64 {d7}, [r0,:64], r1 vst1.64 {d16}, [r0,:64], r1 vst1.64 {d17}, [r0,:64] bx lr endfunc function ff_vc1_inv_trans_8x4_dc_neon, export=1 ldrsh r2, [r2] @ int dc = block[0]; vld1.64 {d0}, [r0,:64], r1 vld1.64 {d1}, [r0,:64], r1 vld1.64 {d4}, [r0,:64], r1 vld1.64 {d5}, [r0,:64], r1 add r2, r2, r2, lsl #1 @ dc = ( 3 * dc + 1) >> 1; sub r0, r0, r1, lsl #2 @ restore r0 to original value add r2, r2, #1 asr r2, r2, #1 add r2, r2, r2, lsl #4 @ dc = (17 * dc + 64) >> 7; add r2, r2, #64 asr r2, r2, #7 vdup.16 q1, r2 @ dc vaddw.u8 q3, q1, d0 vaddw.u8 q8, q1, d1 vaddw.u8 q9, q1, d4 vaddw.u8 q10, q1, d5 vqmovun.s16 d0, q3 vqmovun.s16 d1, q8 vqmovun.s16 d4, q9 vst1.64 {d0}, [r0,:64], r1 vqmovun.s16 d5, q10 vst1.64 {d1}, [r0,:64], r1 vst1.64 {d4}, [r0,:64], r1 vst1.64 {d5}, [r0,:64] bx lr endfunc function ff_vc1_inv_trans_4x8_dc_neon, export=1 ldrsh r2, [r2] @ int dc = block[0]; vld1.32 {d0[]}, [r0,:32], r1 vld1.32 {d1[]}, [r0,:32], r1 vld1.32 {d0[1]}, [r0,:32], r1 vld1.32 {d1[1]}, [r0,:32], r1 add r2, r2, r2, lsl #4 @ dc = (17 * dc + 4) >> 3; vld1.32 {d4[]}, [r0,:32], r1 add r2, r2, #4 vld1.32 {d5[]}, [r0,:32], r1 vld1.32 {d4[1]}, [r0,:32], r1 asr r2, r2, #3 vld1.32 {d5[1]}, [r0,:32], r1 add r2, r2, r2, lsl #1 @ dc = (12 * dc + 64) >> 7; sub r0, r0, r1, lsl #3 @ restore r0 to original value lsl r2, r2, #2 add r2, r2, #64 asr r2, r2, #7 vdup.16 q1, r2 @ dc vaddw.u8 q3, q1, d0 vaddw.u8 q8, q1, d1 vaddw.u8 q9, q1, d4 vaddw.u8 q10, q1, d5 vqmovun.s16 d0, q3 vst1.32 {d0[0]}, [r0,:32], r1 vqmovun.s16 d1, q8 vst1.32 {d1[0]}, [r0,:32], r1 vqmovun.s16 d4, q9 vst1.32 {d0[1]}, [r0,:32], r1 vqmovun.s16 d5, q10 vst1.32 {d1[1]}, [r0,:32], r1 vst1.32 {d4[0]}, [r0,:32], r1 vst1.32 {d5[0]}, [r0,:32], r1 vst1.32 {d4[1]}, [r0,:32], r1 vst1.32 {d5[1]}, [r0,:32] bx lr endfunc function ff_vc1_inv_trans_4x4_dc_neon, export=1 ldrsh r2, [r2] @ int dc = block[0]; vld1.32 {d0[]}, [r0,:32], r1 vld1.32 {d1[]}, [r0,:32], r1 vld1.32 {d0[1]}, [r0,:32], r1 vld1.32 {d1[1]}, [r0,:32], r1 add r2, r2, r2, lsl #4 @ dc = (17 * dc + 4) >> 3; sub r0, r0, r1, lsl #2 @ restore r0 to original value add r2, r2, #4 asr r2, r2, #3 add r2, r2, r2, lsl #4 @ dc = (17 * dc + 64) >> 7; add r2, r2, #64 asr r2, r2, #7 vdup.16 q1, r2 @ dc vaddw.u8 q2, q1, d0 vaddw.u8 q3, q1, d1 vqmovun.s16 d0, q2 vst1.32 {d0[0]}, [r0,:32], r1 vqmovun.s16 d1, q3 vst1.32 {d1[0]}, [r0,:32], r1 vst1.32 {d0[1]}, [r0,:32], r1 vst1.32 {d1[1]}, [r0,:32] bx lr endfunc